000904042 001__ 904042
000904042 005__ 20240711113817.0
000904042 0247_ $$2doi$$a10.1016/j.nme.2021.100999
000904042 0247_ $$2Handle$$a2128/29734
000904042 0247_ $$2WOS$$aWOS:000670923000005
000904042 037__ $$aFZJ-2021-05612
000904042 082__ $$a624
000904042 1001_ $$0P:(DE-Juel1)162424$$aDekeyser, W.$$b0
000904042 245__ $$aPlasma edge simulations including realistic wall geometry with SOLPS-ITER
000904042 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000904042 3367_ $$2DRIVER$$aarticle
000904042 3367_ $$2DataCite$$aOutput Types/Journal article
000904042 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641196660_4795
000904042 3367_ $$2BibTeX$$aARTICLE
000904042 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904042 3367_ $$00$$2EndNote$$aJournal Article
000904042 520__ $$aIn plasma edge simulations using the SOLPS-ITER code, the simulated Scrape-Off Layer plasma domain has historically been restricted to magnetic flux surfaces contacting divertor targets at both ends. We present here a newly developed numerical solver for the B2.5 plasma solver in SOLPS-ITER, allowing the numerical grid to be extended to the true vessel boundaries. The new, unstructured Finite Volume scheme can deal with arbitrary grids and magnetic topologies in the 2D poloidal plane. It includes a correct numerical treatment of possibly misaligned faces and cells w.r.t. the magnetic field to cope with, for example, strong divertor target shaping. The solver combines the benefits of an accurate numerical separation of fast parallel and slow radial transport, with a realistic description of the wall geometry, and the possibility of local grid refinement to capture sharp features in the Scrape-Off Layer flows. Generalized sheath boundary conditions are presented that can be imposed at all vessel boundaries, removing an important modeling uncertainty related to the specification of ad hoc decay length boundary conditions at the outer flux surfaces. The resulting model is applied to an AUG single-null case, a standard benchmark case for SOLPS-ITER. We analyze in particular the impact of the extended plasma model on upstream and divertor plasma conditions, and the improved predictions of heat and particle loads to the main chamber wall. The extended solver also allows for a much improved qualitative agreement between fluid and kinetic neutral simulations, because the fluid neutral solution, which is obtained on the plasma grid, now also extends to the true main chamber and divertor vessel boundaries.
000904042 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904042 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904042 7001_ $$0P:(DE-Juel1)5011$$aBoerner, P.$$b1$$eCorresponding author$$ufzj
000904042 7001_ $$0P:(DE-Juel1)144958$$aVoskoboynikov, S.$$b2
000904042 7001_ $$0P:(DE-HGF)0$$aRozhanksy, V. A.$$b3
000904042 7001_ $$00000-0001-5458-4919$$aSenichenkov, I.$$b4
000904042 7001_ $$00000-0002-8283-9138$$aKaveeva, L.$$b5
000904042 7001_ $$0P:(DE-HGF)0$$aVeselova, I.$$b6
000904042 7001_ $$00000-0001-9771-5579$$aVekshina, E.$$b7
000904042 7001_ $$0P:(DE-Juel1)178016$$aBonnin, X.$$b8$$ufzj
000904042 7001_ $$0P:(DE-HGF)0$$aPitts, R. A.$$b9
000904042 7001_ $$0P:(DE-HGF)0$$aBaelmans, M.$$b10
000904042 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2021.100999$$gVol. 27, p. 100999 -$$p100999 -$$tNuclear materials and energy$$v27$$x2352-1791$$y2021
000904042 8564_ $$uhttps://juser.fz-juelich.de/record/904042/files/1-s2.0-S2352179121000788-main.pdf$$yOpenAccess
000904042 909CO $$ooai:juser.fz-juelich.de:904042$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5011$$aForschungszentrum Jülich$$b1$$kFZJ
000904042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178016$$aForschungszentrum Jülich$$b8$$kFZJ
000904042 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904042 9141_ $$y2021
000904042 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000904042 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000904042 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904042 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000904042 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000904042 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000904042 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000904042 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000904042 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904042 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-02
000904042 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000904042 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000904042 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000904042 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904042 9801_ $$aFullTexts
000904042 980__ $$ajournal
000904042 980__ $$aVDB
000904042 980__ $$aUNRESTRICTED
000904042 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904042 981__ $$aI:(DE-Juel1)IFN-1-20101013