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A B S T R A C T

In plasma edge simulations using the SOLPS-ITER code, the simulated Scrape-Off Layer plasma domain has
historically been restricted to magnetic flux surfaces contacting divertor targets at both ends. We present here
a newly developed numerical solver for the B2.5 plasma solver in SOLPS-ITER, allowing the numerical grid to
be extended to the true vessel boundaries. The new, unstructured Finite Volume scheme can deal with arbitrary
grids and magnetic topologies in the 2D poloidal plane. It includes a correct numerical treatment of possibly
misaligned faces and cells w.r.t. the magnetic field to cope with, for example, strong divertor target shaping.
The solver combines the benefits of an accurate numerical separation of fast parallel and slow radial transport,
with a realistic description of the wall geometry, and the possibility of local grid refinement to capture sharp
features in the Scrape-Off Layer flows. Generalized sheath boundary conditions are presented that can be
imposed at all vessel boundaries, removing an important modeling uncertainty related to the specification
of ad hoc decay length boundary conditions at the outer flux surfaces. The resulting model is applied to an
AUG single-null case, a standard benchmark case for SOLPS-ITER. We analyze in particular the impact of the
extended plasma model on upstream and divertor plasma conditions, and the improved predictions of heat
and particle loads to the main chamber wall. The extended solver also allows for a much improved qualitative
agreement between fluid and kinetic neutral simulations, because the fluid neutral solution, which is obtained
on the plasma grid, now also extends to the true main chamber and divertor vessel boundaries.
1. Introduction

The SOLPS-ITER [1,2] code suite is presently the most widely used
package for plasma edge modeling in the magnetic fusion community.
It interprets exhaust scenarios in most existing devices, and supports the
design of future devices, such as ITER [3,4], DEMO [5] or CFETR [6].
One of the important limitations of the package thus far has been the
restriction of the simulated Scrape-Off Layer (SOL) plasma domain to
magnetic flux surfaces contacting divertor targets at both ends, cover-
ing only the near-SOL region and a limited part of the divertor. At the
same time, modeling uncertainty is introduced by the need to specify
rather arbitrary decay length or leakage type boundary conditions (BCs)
at these last simulated flux surfaces. While this approach is generally
assumed sufficiently reliable to accurately model the particle and heat
loads at the divertor targets, it prohibits an accurate assessment of
particle and heat loads to the other plasma-facing components such
as the main chamber wall, upper part of the baffles, and the dome,
taking the particular example of the ITER tokamak. Moreover, an
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assessment of far-SOL flows, which play a key role in material erosion,
migration, and re-deposition studies, is precluded without a numerical
grid extending to the wall surfaces.

Options to extend the plasma grid to the vessel boundary have previ-
ously been implemented in SOLPS code versions, first in SOLPS4 [7,8]
and later also in SOLPS5.0 [9], but were not yet included in SOLPS-
ITER. These implementations followed a so-called cut-cell approach,
where the code internally relies on topologically structured, orthogonal
grids extending beyond the vessel, but cells outside of the vessel are
‘isolated’ or removed from the computations. To our knowledge, only a
few other plasma edge codes have developed extended grid capabilities.
SOLEDGE2D-EIRENE [10] also relies on structured, field-aligned grids
extending beyond the vessel boundaries. It implements realistic wall
geometries by identifying parts of the grid outside of the actual vessel
by a mask function, and forcing the plasma density and momentum
to zero in those cells through a penalization scheme in a finite vol-
ume setting. In Ref. [11] a higher order HDG (Hybrid Discontinuous
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Galerkin) approach is used for plasma edge simulations in realistic
geometries. Due to the higher order schemes, fully unstructured, non-
aligned grids can be used, which opens up the possibility to simulate
varying magnetic field configurations without the need for remeshing.
However, at present the physics model implemented in the HDG code
is less complete than that of SOLPS-ITER or SOLEDGE2D-EIRENE. Also
the TOKES code [12], developed at KIT, has full grids to the walls and
options for adaptive grids, but has no kinetic neutral package.

In this contribution, we present a newly developed numerical solver
for the B2.5 plasma solver in SOLPS-ITER, allowing the numerical grid
to be extended to the true vessel boundaries. The scheme generalizes
the extended grids capability developed for older SOLPS code ver-
sions [7–9] towards unstructured, finite volume grids. This enables full
flexibility for the resolution of wall features and complex magnetic
topologies. It includes a correct numerical treatment of possibly mis-
aligned cells w.r.t. the magnetic field to cope with, for example, strong
divertor target shaping [13].

The paper discusses the basic principles underlying the new ex-
tended grids solver. Section 2 motivates the choice to move towards a
fully unstructured finite volume approach for SOLPS-ITER, by compar-
ing with existing extended grid approaches for B2(.5) and identifying
remaining issues and bottlenecks. Section 3 describes the main aspects
of the discretization of the governing plasma equations on arbitrary,
unstructured grids. Generalized sheath boundary conditions and the
coupling with kinetic neutrals are described in Sections 4 and 5 . In
Section 6, the new solver is applied to extended grid simulations for a
reference AUG case, including, for the first time, coupled B2.5-EIRENE
extended grid simulations. Finally, conclusions and perspectives are
summarized in Section 7.

2. Unstructured finite volume grids for plasma edge simulations

The first implementations of extended grid options in SOLPS code
versions followed a cut-cell approach [7–9]. A structured, fully orthog-
onal grid is first constructed that extends beyond the vessel walls, after
which the actual geometry is introduced by ‘cutting’ through these
orthogonal cells. As a result, only cells in contact with the boundary are
not perfectly aligned with the magnetic field, in the sense of having two
faces aligned with and two faces orthogonal to the poloidal projection
of the magnetic field. An example of such a grid for the ASDEX
Upgrade (AUG) tokamak, constructed with CARRE2, is given in Fig. 1
(right) [9]. Cells in contact with the vessel are indicated in green. This
approach allows the plasma up to the vessel wall to be described with
relatively small adaptations to the code: the grid remains topologically
rectangular, with cells outside of the actual vessel simply ‘isolated’ or
removed from the computation. Modifications to the computation of
fluxes are only needed in cells/faces near the boundaries. However,
there are several drawbacks to this approach. Due to the restriction
to structured grids with orthogonal internal grid lines, and the need to
avoid cells with more than 4 faces at boundaries, poloidal and radial
grid resolutions near boundaries cannot be controlled independently,
but are determined by the local surface inclination. In addition, ob-
taining good resolution of gradients developing towards the sheath is
challenging. This results in very large cell numbers in the divertor,
and unnecessarily high resolution in other grid areas (e.g. upstream).
Moreover, simulating advanced divertor configurations with multiple
and/or higher-order X-points is challenging in this structured approach.

Locally improving the grid resolution near boundaries can be
achieved by aligning (poloidal) faces with the surface instead of with
the field, as is currently often done near divertor targets (see Fig. 1
(left)). Hence, it is reasonable to consider a combination of a cut-
cell approach with grid deformation to combine the benefits of both
approaches. However, as seen in Fig. 1, the combination of mesh
alignment with the targets and strong target shaping often leads to
‘bunching’ of field lines near the top of the baffles. Similar effects of
‘bunched’ grid lines appear due to the presence of an X-point, both in
2

the orthogonal and misaligned grid approaches (Fig. 1). This grid line
bunching again leads to unnecessarily high resolution in some parts of
the grid (e.g. near the top of the baffles), and also leads to numerical
difficulties due to rapidly varying cell sizes.

To avoid effects such as grid line bunching, a fully unstructured grid
approach is the most promising. Two illustrative examples are given
in Fig. 2. The left figure shows how the use of a few triangular cells
internal to the domain allows a good, uniform poloidal resolution in the
entire divertor leg to be achieved even in the presence of strong target
shaping. The right figure shows how the use of pentagonal cells in the
vicinity of the X-point permits good spatial resolution at the X-point,
without bunching field lines further away. These kinds of unstructured
grids also provide the largest flexibility to resolve geometrical features
in the wall geometry, complex magnetic topologies (e.g. snowflake,
X and super-X divertors), and naturally enable more advanced grid
features such as boundary layer grids, local grid refinement, and adap-
tive grid refinement. Based on these considerations, it was decided to
convert the B2.5 plasma solver into a fully unstructured finite volume
solver, that allows for arbitrary polygonal cell shapes with arbitrary
orientation of each cell face w.r.t. the magnetic field.

While the new unstructured solver can treat a wide range of com-
plex grids and magnetic topologies, a word of caution is needed. It is by
no means recommended to switch, for example, to pure triangulations
of the simulated domain. The numerical discretization (see Section 3)
is still based on hybrid schemes, which are second order in space
for diffusion-dominated flows, but revert to first order for convection-
dominated cases. The combination of these low-order schemes with
the large anisotropy between parallel and perpendicular directions
will lead to excessive discretization errors unless some form of grid
alignment is maintained. It is therefore recommended that the grid
be kept as close as possible to an aligned, structured topology, using
quadrilateral cells with two faces perfectly aligned with the flux sur-
faces, and two faces ‘as orthogonal as possible’ to the poloidal magnetic
field. This is especially needed in the core and near-SOL regions. Not
only will this limit the numerical error, it will also improve code
stability and convergence properties compared to non-aligned cells by
reducing the size and complexity of the stencil. The use of non-aligned
faces and non-quadrangular cells should be limited to the areas where
they are strictly needed, such as (a) in the vicinity of the walls (to
resolve geometrical features and steep gradients towards the sheath), or
(b) to reduce ‘bunching’ of field lines arising from an X-point or strongly
shaped targets. In case triangles or pentagonal cells are included in
the grid, optimal numerical performance is expected if these cells are
within the same ‘discretized flux tube’ as their neighboring cells in the
poloidal direction. For triangles, this means at least one of the triangle
faces should be kept aligned with a flux surface.

3. Discretization of the governing equations on unstructured grids

The equations governing plasma transport in the unstructured B2.5
code follow the model described in Ref. [14], which has thus far also
been the default model in the structured B2.5 code in SOLPS-ITER.
The model includes continuity and parallel momentum equations for
ions and (atomic) neutral species, and ion and electron internal energy
equations. The condition that the divergence of the currents must be
zero leads to an equation for the plasma potential. Parallel transport is
classical, following Braginskii, while a typical diffusive approximation
is used for the anomalous radial transport. The equations are solved in
the 2D poloidal plane, assuming symmetry in the toroidal direction.

To describe the discretization of the governing equations, we base
the discussion on a general nonlinear, anisotropic, convection–diffusion
equation, following the notation introduced in Ref. [13]:
𝜕𝑢 + ∇ ⋅ Γ = 𝑆. (1)

𝜕𝑡
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Fig. 1. Examples of ‘standard’ (left) and extended (right) AUG grids created by CARRE2 for SOLPS5. Figures reproduced from Ref. [9].
Fig. 2. Examples of refinement near targets (left), and near X-point (right) using internally unstructured grid topology. Red lines are additional grid lines used for local refinement
compared to Fig. 1. In the right figure, cells that effectively became pentagonal are indicated with thick black contours. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
In this equation, 𝑢 is a transported quantity, Γ the corresponding
flux, and 𝑆 a source term. The flux of a particular quantity follows a
convection–diffusion prescription,

Γ = 𝐂𝑢 −∇𝑢. (2)

The anisotropy in the equations is most naturally expressed w.r.t.
the poloidal and radial directions, which, by definition, are locally
orthogonal to each other. We denote these directions by {𝜃, 𝑟}, with
respective unit vectors 𝐞𝜃 and 𝐞𝑟. In our notation, the poloidal direction
points along the poloidal projection of the magnetic field, and the
radial direction is orthogonal to it in the poloidal plane, forming a
right-handed system with the third unit vector 𝐞𝜙 along the toroidal
projection of the field. These unit vectors therefore may flip orientation
with poloidal/toroidal field reversal. The coefficient 𝐂 = 𝐶𝜃𝐞𝜃 +𝐶𝑟𝐞𝑟 in
Eq. (2) is a vector describing the convective flux of 𝑢, with components
defined in the poloidal and radial directions, and  = [𝐷𝜃𝜃𝐷𝜃𝑟, 𝐷𝑟𝜃𝐷𝑟𝑟]
is a diffusive tensor. The cross-diffusivities 𝐷𝜃𝑟 and 𝐷𝑟𝜃 are included
because they are representative of the treatment of drift flows. Indeed,
because in general drift flows have a form ∼ ∇𝑣×𝐁, with 𝑣 some scalar
field (e.g. pressure, electric potential, magnetic field strength,. . . ), they
have the same structure as a cross-diffusion term with 𝐷𝜃𝜃 = 𝐷𝑟𝑟 = 0
and 𝐷𝜃𝑟 = −𝐷𝑟𝜃 = 𝐷d [13].

In B2.5, the balance Eqs. (1) are discretized using a finite volume
technique, which requires the evaluation of the fluxes in Eq. (2) across
cell faces:

Γ ⋅ 𝐒 = 𝛤𝜃𝑆𝜃 + 𝛤𝑟𝑆𝑟,

=
(

𝐶𝜃𝑢 −𝐷𝜃𝜃∇𝜃𝑢 −𝐷𝜃𝑟∇𝑟𝑢
)

𝑆𝜃 +
(

𝐶𝑟𝑢 −𝐷𝑟𝜃∇𝜃𝑢 −𝐷𝑟𝑟∇𝑟𝑢
)

𝑆𝑟, (3)

where 𝐒 = 𝑆𝜃𝐞𝜃 + 𝑆𝑟𝐞𝑟 is the surface vector of a face, expanded in its
poloidal and radial components.
3

In an extended grids context, a cell face will in general not be
aligned with either the poloidal or the radial directions. This is cer-
tainly true for the faces in direct contact with the walls (targets, main
chamber, . . . ), but also already in existing structured grids, because
radial faces are usually distorted to match divertor targets. We therefore
consider first a face arbitrarily oriented w.r.t. the magnetic field, see
Fig. 3. The face under consideration is the thick solid line connecting
vertices 𝑉1 and 𝑉2. 𝐶1 and 𝐶2 are the cell centers on either side of the
face. The 𝑥-direction is defined through the (not necessarily straight)
coordinate line connecting 𝐶1 and 𝐶2, going through the center of the
cell face, and positive from 𝐶1 to 𝐶2. The 𝑦-direction is tangent to the
face, positive from 𝑉1 to 𝑉2. The local coordinate system defined by 𝑥
and 𝑦 is in general curvilinear, and not orthogonal. 𝛾 is the complement
of the angle between the 𝑥 and 𝑦 directions. The normal to the face,
⟂ 𝑦, is defined such that cos 𝛾 > 0 (i.e. −𝜋∕2 < 𝛾 < 𝜋∕2). For a face
perpendicular to the connector line we have a locally orthogonal {𝑥, 𝑦}
system, with 𝛾 = 0. Also at the face, we draw the local (orthogonal)
poloidal and radial unit vectors. The orientation of the face w.r.t.
the local magnetic field is given by the angle 𝛼 between the poloidal
magnetic field and the normal to the face. The angle 𝛽 = 𝛾 −𝛼 between
the 𝑥 direction and the poloidal field direction is introduced for ease of
notation below.

With these definitions, the typical faces that appear in structured
grids are special instances of this general face description. For example,
for a poloidal field clockwise from inner to outer target and toroidal
field out of the page, we have that (1) an orthogonal ‘poloidal’ face
between perfectly aligned cells has 𝛼 = 𝛽 = 𝛾 = 0, 𝐞𝑥 = 𝐞𝜃 , 𝐞𝑦 = 𝐞𝑟, (2)
an aligned ‘radial’ face between perfectly aligned cells has 𝛼 = 𝜋∕2, 𝛽 =
−𝜋∕2, 𝛾 = 0, 𝐞𝑥 = 𝐞𝑟, 𝐞𝑦 = −𝐞𝜃 , while (3) a ‘misaligned’ poloidal face
between cells with aligned radial faces has 𝛼 = 𝛾, 𝛽 = 0, 𝐞𝑥 = 𝐞𝜃 and (4)
an aligned radial face between cells with ‘misaligned’ poloidal faces has
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Fig. 3. Local coordinate systems defining cell face orientation w.r.t. magnetic field, cell centers, and vertices. Left: toroidal field out of page. Right: toroidal field into the page.
Fig. 4. Specification of face angles for a few representative configurations: (a) slanted poloidal face between cells with aligned radial faces; (b) aligned radial face between cells
with slanted poloidal faces; (c) orthogonal poloidal face between cells with one radial face aligned with the poloidal field, and the other radial face aligned with the vessel
boundary. (d)–(f): same cases, with reversed orientation of the poloidal field. Toroidal field out of the page.
𝛼 = 𝜋∕2, 𝛾 ≠ 0, 𝐞𝑦 = −𝐞𝜃 . Hence, our description here is a generalization
of the one we presented in Ref. [13]. The definition of these face angles
for a few typical cell configurations is illustrated in Fig. 4.

To compute the poloidal and radial components of the gradient
required in Eq. (3), we relate them to the gradients in the 𝑥 and 𝑦
directions, which in turn can be computed directly from differences
between cell center (for ∇𝑥𝑢) and vertex (for ∇𝑦𝑢) values of 𝑢. The
desired expression for the components of the gradient can be obtained
by expanding the gradient in the orthogonal poloidal–radial system,
∇𝑢 = ∇𝜃𝑢 𝐞𝜃 + ∇𝑟𝑢 𝐞𝑟, and applying the definition of the gradient,
∇d𝑢 = ∇𝑢 ⋅ 𝐝 for an arbitrary direction 𝐝, to the unit vectors 𝐞𝑥 and
𝐞𝑦:

∇𝑥𝑢 = ∇𝑢 ⋅ 𝐞𝑥 = ∇𝜃𝑢 𝐞𝜃 ⋅ 𝐞𝑥 + ∇𝑟𝑢 𝐞𝑟 ⋅ 𝐞𝑥,

∇𝑦𝑢 = ∇𝑢 ⋅ 𝐞𝑦 = ∇𝜃𝑢 𝐞𝜃 ⋅ 𝐞𝑦 + ∇𝑟𝑢 𝐞𝑟 ⋅ 𝐞𝑦.

From Fig. 3 we see that 𝐞𝜃 ⋅ 𝐞𝑥 = cos 𝛽, 𝐞𝑟 ⋅ 𝐞𝑥 = ∓ sin 𝛽, 𝐞𝜃 ⋅ 𝐞𝑦 = − sin 𝛼
and 𝐞𝑟 ⋅𝐞𝑦 = ±cos 𝛼, with the upper signs corresponding to toroidal field
out of the page, and the lower signs with toroidal field into the page.
Inverting the system, we obtain

∇𝜃𝑢 = cos 𝛼
cos 𝛾

∇𝑥𝑢 +
sin 𝛽
cos 𝛾

∇𝑦𝑢, (4)

∇𝑟𝑢 = ± sin 𝛼 ∇𝑥𝑢 ±
cos 𝛽

∇𝑦𝑢. (5)
4

cos 𝛾 cos 𝛾
For completeness we give also the component of the gradient normal
to the face, which is needed for some boundary conditions,

∇n𝑢 = 1
cos 𝛾

∇𝑥𝑢 +
sin 𝛾
cos 𝛾

∇𝑦𝑢,

and note, trivially, that the component tangential to the face is the
component in the 𝑦-direction: ∇t𝑢 = ∇𝑦𝑢.

Computing the poloidal and radial components of the gradient in
general thus requires a combination of gradients in 𝑥 and 𝑦 directions.
The need for vertex values, which in turn are computed from cell center
values using an appropriate interpolation scheme, leads to stencils that
can become quite arbitrary and large, especially for grids including
triangles. For example, structured grid areas with orthogonal, quad-
rangular cells lead to a standard 5-point stencil; structured grid areas
with only misaligned poloidal faces give rise to a 9-point stencil [13];
the presence of an X-point typically leads to a 13-point stencil for
the surrounding (quadrangular) cells, while the presence of triangles
in the grid might lead to even broader stencils, since the number of
cells connected to a single vertex is then no longer limited to 4. The
unstructured solver fully accounts for this arbitrary number of points
in the stencil, which leads to improved numerical stability. However,
complex stencils also tend to slow down the matrix inversion process
and require smaller time steps, which is why it is recommended to use
as much as possible locally structured, orthogonal grid topologies.

Drift terms can also be discretized using the expressions above. Only
the component of the drift perpendicular to a face leads to transport
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across a face. Recalling that drifts have the form of a cross-diffusion
term in Eq. (3), the net drift flow Γd across a face is of the form

Γd ⋅ 𝐒 = −𝐷d
(

∇𝑟𝑢𝑆𝜃 − ∇𝜃𝑢𝑆𝑟
)

= ∓𝐷d∇𝑦𝑢𝑆, (6)

where we use the identity 𝐒 = (cos 𝛼 𝐞𝜃 ± sin 𝛼 𝐞𝑟)𝑆. Thus, net drift flow
across the face depends only on gradients along the face, while the
decomposition of the drift into its poloidal and radial components (as
required for example for the collisions with neutrals) requires again the
correct computation of the radial/poloidal gradients on each (possibly
non-aligned) face.

Using the expressions for the fluxes and derivatives on faces given
above, the governing equations can be discretized. Gradients in cell
centers are obtained through interpolation of the cell face gradients.
The discretization schemes of the structured version of the code have
been generalized to arbitrary unstructured grids. Hybrid discretization
schemes are used for the convection–diffusion flows, which are second
order in space for diffusion-dominated flows, but tend to a first-order
upwind scheme in convection-dominated flows.

The implementation guarantees exact backwards compatibility for
original, structured, orthogonal grids. However, the discretization
schemes of the unstructured solver no longer neglect effects of misalign-
ment w.r.t. the magnetic field, and hence the solver is more accurate
in realistic plasma edge geometries, even for non-extended grid cases.
As demonstrated in Ref. [13], this is particularly important when using
fluid neutral models. During the development of the new solver, various
additional improvements to the numerical schemes were implemented.
To avoid odd–even decoupling in the parallel direction due to the
collocated velocity and density (pressure) fields, a Rhie–Chow scheme
for compressible flow as described in Ref. [15] is implemented for the
parallel direction. Flux limits for fluid neutrals now act on the total
gradient-driven (particle or heat) fluxes, instead of only on the poloidal
(for ‘poloidal’ faces) or radial (for ‘radial’ faces) components of the
gradient as in the original code. This latter improvement removes an
unwanted, artificial rotation of the flow direction due to the neutral
flux limits in the original code. More details on the numerical scheme
and related improvements will be presented in a companion paper. This
same paper will present the results of the extensive verification that
the solver has been (and is being) subjected to using the Method of
Manufactured Solutions.

4. Generalized sheath boundary conditions

With grids extending to the wall along the entire plasma boundary,
the need for artificial decay length or ‘leakage’ type BCs at outer flux
surfaces is removed. At least in principle, we can now apply sheath
BCs for the plasma at all vessel boundaries, thereby eliminating an
important modeling uncertainty associated with existing simulations
using structured grids. However, in any (2D) configuration there will
always be areas in which the incidence angle of the field is extremely
shallow (below a few degrees), or even purely tangential, where stan-
dard sheath theory breaks down and the Bohm–Chodura condition
does not result in a meaningful prescription of the boundary condition.
While the total extent of these areas – and hence their impact on the
overall simulation results – is expected to be rather small in most
cases, the equations do require a proper BC along the entire vessel.
The investigation of the behavior of the sheath in (near) tangential
conditions is an area of active research, and beyond the scope of the
current work. Instead, we suggest a pragmatic generalization of the
standard Bohm–Chodura conditions to a form applicable at all vessel
boundaries, including truly tangential ones. More details on the BCs,
including the reformulation of the BCs in presence of strong drifts, will
be presented in the companion paper.

The standard Bohm–Chodura condition [16,17], already accounting
for the possible effect of 𝐸×𝐵 drifts [18], states that the sum of plasma
5

parallel and 𝐸×𝐵 velocities for a certain species 𝑎, projected normal to
the surface must equal the plasma sound speed 𝑐s times the projection
of the field unit vector normal to the wall:

𝑢∥,𝑎𝐛 ⋅ 𝝂 + 𝐕𝐸×𝐵 ⋅ 𝝂 = 𝑢∥,𝑎𝐛 ⋅ 𝝂 ∓
𝐵𝜙

𝐵2
∇𝝉𝜑 = |

|

𝐛 ⋅ 𝝂 |
|

𝑐s, (7)

with 𝝂 defined as the outward normal at the boundary (i.e. pointing
away from the plasma), 𝝉 the local tangential direction to the surface,
and 𝐛 the unit vector along the magnetic field direction. 𝜑 denotes
the electric potential. In a possible further generalization, the grad-
𝐵 drift could also be included on the left-hand side of Eq. (7). This
condition can be used as a boundary condition for the parallel velocity.
Analyzing this equation first in the absence of drifts, it states that
𝑢∥,𝑎𝐛 ⋅ 𝝂 = |

|

𝐛 ⋅ 𝝂 |
|

𝑐s. This imposes sound speed on the parallel velocity,
but the condition is undetermined for the case of a perfectly tangential
field (𝐛 ⋅ 𝝂 = 0). When drifts are included, the parallel velocity may
need to be higher/lower than the local sound speed to compensate
for a contribution of the 𝐸 × 𝐵 component normal to the boundary
(determined by the gradient of the potential along the boundary). For
the case of a purely tangential field, the condition actually becomes a
condition on the potential, requiring that ∇𝝉𝜑 = 0. For near-tangential
conditions, extremely large parallel velocities may be required, espe-
cially if the 𝐸 × 𝐵 velocity is large. In any case, the Bohm–Chodura
condition cannot be applied when the drift velocity is larger than two
times the projected sound speed. Hence, both with and without drifts,
we need a solution for grazing incidence. In the absence of an available
theory, our pragmatic approach is to revert to a momentum leakage
condition for the momentum flux Γm if the incidence angle is below a
minimal value:

Γm ⋅ 𝝂 = −𝑐m𝐷
𝜆
𝑚𝑎𝑛𝑎𝑢∥,𝑎, (8)

with 𝐷 the anomalous diffusion coefficient, and 𝑚𝑎 and 𝑛𝑎 the mass and
density of ions of species 𝑎. The decay length 𝜆 is an input parameter,
representative of a turbulent characteristic length near the wall, and
𝑐m is an input coefficient of order ∼1. Note that if 𝑐m = 1, and in
combination with the prescription for the particle flux described below,
this condition behaves as a Neumann condition for the parallel velocity.

For the continuity equation, we impose a particle flux normal to
the wall corresponding to the Bohm condition (7), allowing also for an
additional contribution from (isotropic) anomalous transport:

Γ ⋅ 𝝂 = |

|

𝐛 ⋅ 𝝂 |
|

𝑛𝑎𝑐s +
𝐷
𝜆
𝑛𝑎. (9)

The second term provides for some leakage at true grazing incidence,
and also some numerical stabilization. However, except at very graz-
ing incidence or at very low temperatures, the anomalous term will
generally be dominated by the ‘regular’ sheath contribution.

Boundary conditions for the ion and electron internal energy equa-
tions use standard sheath transmission coefficients to specify the inter-
nal energy fluxes (𝐐i∕e): 𝛿i,1 for ions, and 1+𝛾e

1−𝛾e
for electrons, accounting

for secondary electron emission 𝛾e. Also here, the additional small leak-
age contribution to the particle fluxes enters, modeled with dedicated
transmission coefficients 𝛿i∕e,2:

𝐐i ⋅ 𝝂 = 𝛿i,1 ||𝐛 ⋅ 𝝂 |
|

𝑛𝑎𝑐s𝑇i + 𝛿i,2
𝐷
𝜆
𝑛𝑎𝑇i, (10)

𝐐e ⋅ 𝝂 =
(

1 + 𝛾e
1 − 𝛾e

𝑇e + 𝑒𝜑
)

max
(

0, |
|

𝐛 ⋅ 𝝂 |
|

𝑛𝑎𝑐s −
𝑗∥
𝑒
𝐛 ⋅ 𝝂

)

+
(

𝛿e,2𝑇e + 𝑒𝜑
) 𝐷
𝜆
𝑛𝑎. (11)

Here, 𝑇i and 𝑇e are the ion and electron temperatures, 𝑗∥ the parallel
current, and 𝑒 the unit of charge. For the ions, an additional option has
been implemented to make the transmission coefficient 𝛿i,1 consistent
with the ion distribution function sampled on the EIRENE side, see
below. In this case, it is no longer a free parameter.

Finally, the boundary condition for the potential equation is not
modified compared to the standard sheath conditions:

𝐣 ⋅ 𝝂 = 𝑒

(

|

|

𝐛 ⋅ 𝝂 |
|

𝑛𝑎𝑐s −
(

1 − 𝛾e
)

|

|

𝐛 ⋅ 𝝂 |
|

𝑛e
1

√

√

𝑇e exp
(

−
𝑒𝜑

)

)

, (12)

2𝜋 𝑚e 𝑇e
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where 𝐣 is the current.
The BCs described above are ad hoc generalizations of the standard

ohm–Chodura sheath conditions. Since the implementation in the
ode is still based on small guard cells at the boundaries, flexibil-
ty is maintained to impose various other BCs (Dirichlet, Neumann,
obin,. . . ), as well as to further adapt or generalize the sheath con-
itions proposed here based on progressing insight into BCs for grazing
ield incidence.

. Recycling model for kinetic neutral simulations

B2.5 is typically coupled to EIRENE [19,20] for a kinetic simulation
f the neutral species. EIRENE itself is already fully adapted to simula-
ions in complex geometries. However, in the interface with B2.5, some
implifying assumptions were made w.r.t. the grid structure, which
ave to be generalized for the new, unstructured solver.

The default recycling model used in SOLPS-ITER is described in
ef. [20]. At the magnetic pre-sheath entrance, EIRENE samples ions

rom a truncated drifting Maxwellian distribution function, where only
elocity components 𝐯 with 𝐯 ⋅ 𝝂 > 0 are present in the distribution.

The drift velocity and temperature of the truncated Maxwellian are
determined by the ion fluid velocity and ion temperature at the sheath
entrance, as computed by B2.5. These ions are then accelerated through
the sheath potential and neutralized at the surface, after which various
recycling models can be applied [20]. This coupling model has not been
changed conceptually in the new extended grids framework, but has
been generalized to arbitrary orientation of the recycling surfaces. In
the process, some implicit assumptions in the interface have been lifted.

First, in the transfer of parallel/poloidal velocities from B2.5 to
EIRENE, it was assumed that divertor targets were fully orthogonal to
the poloidal field, which led to an artificial rotation of these velocities
normal to the targets in the case of targets inclined w.r.t. the poloidal
field. With the generalization of the geometrical description in the
unstructured code version, this implicit assumption is readily removed.

Secondly, there was a discrepancy between the ion sheath trans-
mission factor and the sheath potential drop used by both codes.
The sheath potential drop in EIRENE was based on a model assum-
ing zero currents through the sheath, while B2.5 does account for
parallel currents, and possibly secondary electron emission, in the
computation of the sheath potential. To correct this situation for the
new unstructured grids, the sheath potential as computed by B2.5
is now passed to EIRENE for the acceleration of recycling ions. For
the ion energy transmission coefficient, a similar though more subtle
effect is present. The sampling of ions from a truncated Maxwellian
distribution on the EIRENE side implies a certain (total) ion energy
transmission coefficient. To ensure global energy conservation in the
coupled code system, the ion sheath transmission factor can then no
longer be set independently on the plasma side. Following Ref. [20],
the total (internal + kinetic) ion sheath transmission coefficient 𝛿i,t for
this distribution is given by

𝛿i,t = 2 + 2
𝜏 + 2

𝜈 + 0.5
𝑔(𝜈 ) − 1
𝑔(𝜈 )

, (13)

ith 𝑔(𝑥) = 1 +
√

𝜋𝑥 (1 + erf(𝑥)) exp(𝑥2), and  = 𝑀𝑐s∕𝑣Ti the nor-
malized drift velocity. 𝑀 is the Mach number, 𝑐s the plasma sound
speed, and 𝑣Ti =

√

2𝑇i∕𝑚i the ion thermal velocity that characterizes
he width of the drifting Maxwellian distribution. Components of the
ormalized drift velocity normal and tangential to the wall are denoted
s 𝜈 and 𝜏 , respectively. For single-species plasmas with equal ion
nd electron temperatures and 𝑀 = 1, this transmission coefficient
epends only on the incidence angle of the field, varying between ∼3.5

(normal incidence) and 3 (tangential field). In general, the exact value
of the coefficient also depends on the ratio between ion and electron
temperatures, and is species-dependent in multispecies plasmas. To
implement this coefficient in B2.5, which solves an internal energy
equation, the ion heat transmission coefficient 𝛿i,1 is specified indirectly
through

(

| |

)

6

𝛿i,1 = 𝛿i,t −𝑄k∕ |

𝐛 ⋅ 𝝂
|

𝑛𝑎𝑐s𝑇i , (14)
with 𝑄k the flux of kinetic energy towards the sheath entrance.
The elimination of these hidden assumptions will lead to differences

in the ion distributions reaching the surface compared to the structured
code, even on existing structured grids, and hence also on the resulting
neutrals. Hence, differences in solutions should also be expected when
continuing existing cases with the new, unstructured SOLPS-ITER ver-
sion. How significant these differences are will depend on the geometry
and parameter settings used in the original case, but should be small
in most cases.

With plasma grids extending to the main chamber and PF region
walls, all neutrals are recycled from the true vessel boundaries, and
no longer from the outermost flux surfaces. This is expected to have
significant impact on the characteristics of main chamber recycling and
sputtering [8]. Removal of the artificial internal recycling boundary
can also influence the effective SOL opacity for recycled neutrals and
therefore significantly influence the pedestal ionization source and
H-mode density profile.

6. Simulations with realistic wall geometry

To test the newly developed code, we have performed a series of
simulations on various grid types. A dedicated grid generator that can
exploit all the features enabled by the new solver is under development
at the ITER Organization. For our proof-of-principle study, we exploit
existing grid generators. The test case is AUG 16151, a standard bench-
mark case for the SOLPS-ITER code. Three different grids are used:
(1) a reference structured grid (available as part of the SOLPS-ITER
repository), built with CARRE [21]; (2) a target mode grid, and (3) a
vessel mode grid (see below for further details). Target and vessel mode
grids were constructed with CARRE2 [9]. The grids are shown in Fig. 5.

The reference grid has 96 × 36 poloidal and radial cells. In the
divertor area, cells are strongly distorted to match the targets. Good
poloidal refinement towards the targets is achieved. However, due to
the vertical target geometry, strong bunching of the grid lines near the
top of the baffles can be noted.

The target mode grid is still a narrow grid. However, the cut-
cell approach is used in the divertor, which leads to fully orthogonal
cells in the interior of the simulation domain, but various trapezoidal
and triangular cells near the target surface. In the vessel mode grid,
the entire domain is gridded with orthogonal internal cells, with the
cut-cell approach used along the full vessel boundary. For these two
grids, the problem of bunched field lines near the top of the baffles
is avoided. The orthogonal cells also result in predominantly 5-point
stencils, which help convergence compared to the strongly distorted
cells in the reference grid. However, with the cut-cell approach it is very
difficult to achieve good poloidal refinement towards vessel boundaries
(which is essential to numerically resolve plasma acceleration towards
the sheath) without drastically increasing the number of cells. This
is especially problematic for the full vessel grid, where a very fine
poloidal resolution is needed in the entire domain in order to properly
resolve all remote wall features.

The resulting target and vessel mode grids have 7018 resp. 14726
cells, and were constructed from orthogonal, structured base grids with
303 × 25 and 432 × 106 poloidal and radial cells respectively. The
vessel mode grid contains exactly the same flux surfaces as the target
mode grid, with additional surfaces added to resolve the entire main
chamber and private flux regions. Poloidal resolution in the divertor is
similar for both grids (but not identical, because it is the result of an
automated CARRE2 procedure [9]). Despite the already high poloidal
resolution of the vessel mode grid, some cells with insufficient poloidal
resolution still remain in some remote areas and pose difficulties for
the convergence of the simulations on this grid.

The simulations reported below have been performed for a
deuterium-only plasma, both with fluid neutrals and with a full kinetic
EIRENE model (incl. molecules and neutral–neutral collisions). The
potential equation is not solved (and hence drifts and currents are not
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Fig. 5. AUG grids, including zoom of the divertor area. Left: reference structured grid; middle: target mode grid; right: vessel mode grid.
included), mainly because at present it remains difficult to solve the
potential equation in full vessel mode. We expect that this problem
will at least partially be resolved by improved gridding techniques
providing better resolution of detailed wall features. We note that
simulations including potential equation, currents, and drifts have been
performed successfully with the target mode grid.

The simulation with kinetic neutrals presented below represents the
first coupled B2(.5)-EIRENE simulation with an extended grid. We use
this simulation mainly to illustrate qualitative agreement with fluid
neutral simulations in the extended grids context. Earlier benchmark
studies have usually found strong qualitative and quantitative differ-
ences between fluid and kinetic neutral simulations, but it is often
hard to quantify to which extent these differences come from kinetic
effects or geometrical details. Indeed, in practice non-extended B2(.5)-
EIRENE simulations have the plasma restricted to an outermost flux
surface, while the neutral grid does fill the entire main chamber (and
divertor) volume up to the vessel. Non-extended B2.5 simulations with
fluid neutrals, on the other hand, also have the fluid neutral population
restricted to the plasma grid. We find that fluid and kinetic neutral
simulations show very reasonable qualitative agreement on extended
grids (i.e. when both are simulated on exactly the same geometry). At
the same time, the differences between solutions on extended and non-
extended domains with fluid neutrals confirm the necessity to take the
full vessel geometry into account in plasma edge simulations.

At the core boundary, we impose a fixed plasma density of 2 ⋅
1019 m−3, fixed 𝑇i = 𝑇e = 275 eV, zero parallel velocity, and zero
neutral particle flux. For the vessel mode simulation, sheath conditions
are applied at the entire wall boundary, imposing 𝑀 = 1 for the
parallel velocity at the sheath entrance, and an ion parallel sheath
transmission coefficient of 𝛿i,1 = 2.5. The anomalous leakage parameters
have been set to 𝜆 = 0.1 m, 𝛿 = 2.5, and 𝛿 = 5 at the main
7

e,2 i,2
chamber boundary, but are not used at the target/baffle boundaries
since the incidence angles in the current setup do not require the
additional stabilization. The anomalous particle diffusion coefficient
and ion/electron conductivities are set at 𝐷 = 0.4 m2s−1 and 𝜒i,e =
1.6 m2s−1. A recycling coefficient of 1 is imposed along the entire
boundary. In the absence of puff and pump, we thus have a closed
system for mass/particles.

For the non-extended (‘narrow’) reference and target mode grids,
we use the same core boundary conditions and sheath conditions at
the targets as for the vessel mode grid, as well as identical transport
coefficients and recycling coefficients. At the outermost radial bound-
ary, leakage parameters were tuned manually to achieve approximately
the same radial profiles of density and temperatures compared to the
full extended grid simulation at the outer midplane.

6.1. Main chamber solution

The ability to simulate up to the main chamber wall has removed
the need for an artificial boundary condition at the outermost magnetic
flux surface. Matching experimental profiles of density and tempera-
tures at the outer midplane traditionally requires tuning both radial
profiles of transport coefficients and decay length, or leakage BCs,
since both have a strong impact on the simulated profiles. Similar
density and temperature profiles can usually be obtained with different
combinations of BCs and transport coefficients. With a grid extending
to the wall, an important free parameter is eliminated from the model,
where now only transport coefficients are available to achieve relevant
solutions.

In the simulations presented here, we have used the extended grid
simulation as a reference to tune the leakage BCs of the narrow grid
simulations, aiming to achieve the same profiles at the outer midplane.
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Both simulations have identical transport coefficients. Note that in
the narrow grid simulations, these leakage parameters are then taken
poloidally constant along the outermost boundary. In contrast, by
postprocessing the results of the extended grid simulation, we find a
variation of up to a factor 2 in the ‘effective’ leakage parameter at this
flux surface. The resulting electron density profiles at the inner and
outer midplane on the various grids are shown in Fig. 6, for the cases
with fluid neutrals. We remark that while the agreement at the outer
midplane is excellent between all grids, some notable differences in the
profiles are seen at the inner midplane. At this location, the profiles of
standard and target-mode grids almost exactly coincide — as expected
since both are non-extended cases. Note that for the standard grid, the
effects of grid distortion near the targets are now fully accounted for
by the numerical scheme. Especially for fluid neutral simulations, this
is absolutely essential. Neglecting grid distortion effects would lead to
qualitatively and quantitatively incorrect results, as already reported
in Ref. [13]. The remaining small differences in the profiles between
standard and target-mode grids are ascribed to discretization effects.
However, the density profile of the fully extended grid shows a peak in
the density profile at the inner midplane as well as a slight broadening
compared to the other cases. This is a result of local recycling effects
near the inner tangency point (see below), an effect only captured by
the extended vessel mode grid.

Fig. 7 compiles 2D distributions of the Mach number from the
simulations. Since the results on the standard and target mode grids
are nearly identical, only the results on the new target mode grid are
shown, along with the Mach number on the extended vessel mode grid
for both fluid and kinetic neutral simulations. Positive Mach numbers
indicate flow in the (positive) magnetic field direction, which has a
counter-clockwise poloidal component in these simulations. The figures
nicely illustrate that for the extended grids outflow with Mach number
1 is reached at all vessel boundaries, as imposed by the sheath boundary
conditions. Some insufficiently resolved areas (cells with large poloidal
width) are also visible near the top of the vessel for the extended cases.
Improved grid generation techniques are needed to better resolve the
solution in these regions. In the near SOL, the Mach number profiles
are qualitatively very similar. Still there is a difference in the range of
10 % between target and vessel mode solutions in almost the entire
near SOL, with peaks up to 50% in the (inner) divertor.

The main chamber fluxes resulting from the plasma flow patterns
of Fig. 7 are illustrated in Fig. 8. It shows the particle, electron and
ion heat fluxes along the main chamber wall, from the top of the inner
baffle clockwise to the top of the outer baffle (fluxes in the divertor
region are not included), for target and vessel mode grids. In the narrow
grid simulation, the radial plasma fluxes at the outermost flux surface
are interpreted as estimates for the main chamber loading using a ‘tele-
portation’ ansatz, resulting in rather smooth profiles of the particle and
heat loads. The ability to simulate beyond this outermost flux surface
in the extended cases leads to a significant redistribution of the plasma
fluxes. Indeed, beyond the outermost flux surface of the narrow grids
the plasma still predominantly follows the magnetic field. Therefore,
the main chamber loads are poloidally concentrated on narrow regions
where the wall is ‘magnetically closest’ to the separatrix (the inner
midplane, the outer midplane, and near the top of the baffles), while
recessed wall areas receive almost no plasma (and recycling) fluxes.
The ‘spike’ in the wall loads around 𝑠 ∼ 3.2 m is located just above the
uter midplane, where due to a local feature in the vessel geometry
he wall is nearly orthogonal to the poloidal field. Similar observations
ere already made in Ref. [7], for standalone extended B2 simulations.
ote that even if we would use the ‘effective’ leakage parameters

rom the wide grid simulation as a boundary condition for the narrow
rid simulation, the results would still differ significantly because this
ar SOL plasma transport cannot be captured by the narrow grids.
imilarly, in the usual approach in which kinetic neutral simulations
8

o extend to the main chamber, despite a limited radial extent of the i
plasma grid, this poloidal redistribution of the plasma fluxes cannot be
captured.

The poloidally localized plasma fluxes also result in a poloidal
redistribution of the neutral recycling processes in the main chamber.
We illustrate this by comparing the plasma particle sources due to
recycling in Fig. 9. Note that the scale in the figure is limited to the
maximum of the sources in the main chamber; the magnitude of the
recycling sources in the divertor is at least an order of magnitude larger.
The noisy results for the case with kinetic neutrals are due to the rather
small (but sufficient) number of neutral trajectories used in this study.

For the narrow grid case, the plasma sources are distributed quite
smoothly in the poloidal direction, since neutrals recycle back into
the plasma directly from the smoothly distributed plasma flux at the
outermost flux surface. Main chamber recycling is somewhat larger
near the outboard side of the machine in the narrow grid case, as
a result of the larger plasma fluxes there, in turn due to the larger
area compared to the high-field side. In contrast, for the extended grid
simulations, main chamber recycling is poloidally clearly concentrated
in a few distinct areas: the inner midplane, the outer midplane, and
near the top of the baffles. These are again the regions which are
magnetically closest to the separatrix, and receive the largest plasma
fluxes. Note that the effect of recycling at the top of the inner baffle is
already partially captured by the narrow grid, because in this particular
case the narrow grid extends quite far up on the inner baffle. While
it is not very obvious from the figures, the outermost flux surface of
the narrow grid is almost exactly tangential to the upper part of the
outer baffle, and only intersects the outer baffle at approximately the
same 𝑍-coordinate as at the inner baffle. This explains why the intense
recycling at the top of the outer baffle is missed by the narrow grid
simulation. Note that the poloidal distribution of the neutrals in the
main chamber (not shown) qualitatively resembles the distribution of
the plasma sources: they are also clearly localized in the same poloidal
regions, with very few neutrals at all near the top of the machine in the
extended grid simulations. The impact of these observations on far-SOL
flows remains to be assessed.

We note that apart from the poloidally localized recycling (and
associated sputtering) patterns, there is a second effect of extended
grid simulations on the energy spectra of neutrals impacting the main
chamber, as assessed in Ref. [8] using a fixed plasma background.
That study concluded that the neutral energy spectra at the main
chamber wall are more biased towards lower energies in extended grid
simulations. This is a result of recycling neutrals being born further
away from the main plasma (i.e. directly at the vessel wall), where
the far SOL plasma is colder. Moreover, the far SOL plasma tends to
screen these cold neutrals more effectively from the near SOL and
core regions, leading to reduced energies of CX neutrals reaching the
main chamber walls compared to simulations on non-extended grids.
In contrast, neutrals in narrow-grid simulations directly recycle back
into the plasma from the outermost simulated flux surface, with higher
initial energies and closer to the hotter near SOL plasma.

6.2. Divertor solution

Finally, we analyze the solutions in the divertor. As for the main
chamber – and since the numerical scheme correctly accounts for grid
distortion – the differences between standard and target mode grids are
small, so we only compare the latter to extended grid simulations.

Fig. 10 shows the electron (top) and neutral (bottom) densities for
target mode and vessel mode grids with fluid neutrals, and for vessel
mode grid with kinetic neutrals. On the rightmost figures, the relative
differences between narrow and extended grid solutions with fluid neu-
trals are shown. Note that these relative differences are only available
on the narrow grid region covered by both simulations. For visibility,
we have limited the scale between −1 and 1 for the relative error, but
we remark that the relative errors show peaks up to a factor ∼ ±2.5

n the divertor area. Clearly, all three solutions are qualitatively quite
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Fig. 6. Electron density profiles at inner (left) and outer (right) midplane, mapped to the outer midplane, for the different grids in Fig. 5. Cases with fluid neutrals.
Fig. 7. Mach number. From left to right: target mode solution; vessel mode solution; vessel mode solution, kinetic neutrals.
Fig. 8. Main chamber fluxes, ranging from top of the inner divertor baffle (left) to outer baffle (right) for the target and vessel mode grids. Top: particles; middle: electron internal
energy; bottom: ion internal energy.
a
similar, predicting roughly the same inner–outer divertor asymmetry
9

nd neutral compression patterns (note: drifts not included). We remark
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Fig. 9. Particle source due to recycling (m−3s−1, log10 scale). Left: target mode solution; middle: vessel mode solution; right: vessel mode solution, kinetic neutrals.
Fig. 10. Electron density (1021 m−3, top) and neutral density (log10 scale, bottom) for, from left to right: target mode grid; vessel mode grid with fluid neutrals; vessel mode grid
with kinetic neutrals. The rightmost figures show the relative difference between target and vessel mode solutions with fluid neutrals. Note that for the kinetic neutral case, we
show the ‘equivalent’ atomic density 𝑛D,eq = 𝑛D + 2𝑛D2

, with 𝑛D the atomic and 𝑛D2
the molecular density.
in particular that both fluid neutral solutions are qualitatively (but not
quantitatively) similar to the simulation with kinetic neutrals, which
includes among others molecules and neutral–neutral collisions. Still,
both extended grid solutions show a few features not present in the
narrow grid solution. For example, the extended solutions are able to
capture the presence of (plasma and) neutrals in the ‘void’ private
flux region, which enables communication between inner and outer
divertors, and leads to some recycling on the top of the structure
between inner and outer divertor legs (near the point where that
structure touches the outer surface simulated by the non-extended
grid). In this particular case the inner target geometry is quite ‘closed’,
with the narrow grid already capturing the closure quite well. Still, for
nearly identical outer midplane conditions, the extended simulations
do predict somewhat denser inner divertor conditions compared to the
narrow grid solution.

For completeness, we also show the particle and heat loads to the
inner and outer targets in Fig. 11. The figures confirm that the fluxes
near the strike zones are not impacted too strongly by the extended
grids in this case study. Especially at the outer target the target and
vessel mode solutions with fluid neutrals are very similar. At the
inner target, the vessel mode profiles are indicative of higher recycling
10
conditions than in the narrow grid, consistent with the observation
of increased plasma and neutral densities (and correspondingly lower
temperatures) in that region (Fig. 10). Although we do not show the
results here, we note also that the most protruding part of the structure
between the divertor legs receives ion and electron heat fluxes of the
same order as those at the top of the baffles, and particle fluxes of the
order of 1 ⋅ 1022 m−2s−1.

7. Conclusion

In this paper we have presented the new unstructured finite volume
solver that has been implemented in the B2.5 plasma transport code
within SOLPS-ITER. The new solver enables 2D plasma edge simu-
lations extending to the true vessel boundaries, providing extensive
flexibility to resolve detailed wall features, as well as arbitrary (ad-
vanced) magnetic topologies. Generalized sheath boundary conditions
are presented that can be applied at any magnetic field incidence
angle. The consistent coupling with EIRENE for simulations with kinetic
neutrals is described.

The newly developed solver has been applied to a standard AUG
benchmark case for SOLPS-ITER, and results both in the main chamber
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Fig. 11. Inner (left) and outer (right) target fluxes. Top: particles; middle: electron internal energy; bottom: ion internal energy.
nd divertor have been compared with standard simulations on non-
xtended grids. With the new solver, poloidally localized main chamber
oading and recycling patterns can now be captured. The resulting
lasmas can form the basis for studies of far SOL flows, as well as main
hamber recycling, erosion, and material migration studies. Taking into
ccount the details of the divertor geometry afforded by the new wide
rids is also shown to be important for the details of the divertor
lasma solution. Moreover, the extended grids functionality leads to
n improved agreement between fluid neutral and kinetic neutral sim-
lations. While we have not analyzed this agreement quantitatively,
he qualitative agreement obtained here is already very promising with
egard to the further development of advanced fluid and hybrid neutral
odels [22–24] which match well with kinetic neutral simulations in
igh recycling and detached conditions.

To further exploit the benefits of the new solver, grid generation
echniques to accurately resolve the wall features without unnecessarily
ncreasing grid resolution in the entire simulated domain need to be
ursued. Presently, the TIARA grid generation tool is being developed
t ITER for that purpose.
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