001     904043
005     20240711113817.0
024 7 _ |a 10.1088/1741-4326/ac2026
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a altmetric:113592174
|2 altmetric
024 7 _ |a WOS:000696374100001
|2 WOS
037 _ _ |a FZJ-2021-05613
082 _ _ |a 620
100 1 _ |a Di Genova, S.
|0 P:(DE-Juel1)180829
|b 0
245 _ _ |a Modelling of tungsten contamination and screening in WEST plasma discharges
260 _ _ |a Vienna
|c 2021
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642841505_8613
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a kein Zugriff auf Postprint
520 _ _ |a The WEST experiment is currently operating with tungsten plasma-facing components and testing ITER-like divertor monoblocks. In order to support WEST experiments interpretation, numerical analyses were carried out. Starting from WEST experimental data, realistic background plasma conditions were reproduced through SolEdge-EIRENE and used as input for ERO2.0 simulations to investigate tungsten migration. Tungsten contamination due to the different plasma-facing components was modelled under different plasma conditions, highlighting a non-negligible contribution of tungsten coming from the tokamak main chamber. Tungsten penetration factor was computed and used as an indication for tungsten screening by the background plasma at the different tokamak plasma-facing components. Simulations showed the main chamber components to be very weakly screened. Light impurities charge was showed to influence not only tungsten sputtering, but also its probability to enter the confined plasma. Simulations results indicated that even when the tungsten source is not heavily influenced by self-sputtering, contamination of the confined plasma can be strongly impacted by it in low density background plasma conditions. Finally, a one-to-one comparison between tungsten visible spectroscopy at the lower divertor from experimental data and from synthetic diagnostics was performed, showing that it is possible to reproduce a realistic lower divertor signal following experimental evidence on light impurities asymmetry between the targets.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gallo, A.
|0 0000-0002-7472-7830
|b 1
700 1 _ |a Fedorczak, N.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Yang, H.
|0 P:(DE-Juel1)161328
|b 3
700 1 _ |a Ciraolo, G.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Romazanov, J.
|0 P:(DE-Juel1)165905
|b 5
|e Corresponding author
700 1 _ |a Marandet, Y.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bufferand, H.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Guillemaut, C.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gunn, J. P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gil, C.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Serre, E.
|0 0000-0002-3174-7727
|b 11
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 12
700 1 _ |a Team, the WEST
|0 P:(DE-HGF)0
|b 13
773 _ _ |a 10.1088/1741-4326/ac2026
|g Vol. 61, no. 10, p. 106019 -
|0 PERI:(DE-600)2037980-8
|n 10
|p 106019 -
|t Nuclear fusion
|v 61
|y 2021
|x 0029-5515
856 4 _ |u https://juser.fz-juelich.de/record/904043/files/Di_Genova_2021_Nucl._Fusion_61_106019.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:904043
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)129976
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21