000904047 001__ 904047
000904047 005__ 20240711113818.0
000904047 0247_ $$2doi$$a10.1088/1741-4326/ac1803
000904047 0247_ $$2ISSN$$a0029-5515
000904047 0247_ $$2ISSN$$a1741-4326
000904047 0247_ $$2Handle$$a2128/29737
000904047 0247_ $$2altmetric$$aaltmetric:111795689
000904047 0247_ $$2WOS$$aWOS:000684701900001
000904047 037__ $$aFZJ-2021-05617
000904047 082__ $$a620
000904047 1001_ $$00000-0003-0104-1616$$aGaspar, J.$$b0$$eCorresponding author
000904047 245__ $$aDivertor power loads and scrape off layer width in the large aspect ratio full tungsten tokamak WEST
000904047 260__ $$aVienna$$bIAEA$$c2021
000904047 3367_ $$2DRIVER$$aarticle
000904047 3367_ $$2DataCite$$aOutput Types/Journal article
000904047 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641204473_5797
000904047 3367_ $$2BibTeX$$aARTICLE
000904047 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904047 3367_ $$00$$2EndNote$$aJournal Article
000904047 520__ $$aWEST is a full W tokamak with an extensive set of diagnostics for heat load measurements especially in the lower divertor. It is composed by infrared thermography, thermal measurement with thermocouples and fibre Bragg grating embedded few mm below the surface and flush mounted Langmuir probes. A large database including different magnetic equilibrium and input power is investigated to compare the heat load pattern (location, amplitude of the peak and heat flux decay length) on the inner and outer strike point regions: from the first ohmic diverted plasma (obtained during the second experimental campaign C2 in 2018) up to the high power (8 MW total injected) and high energy (up to 90 MJ injected energy in lower single null configuration) experiments performed in the last experimental campaign (C4 in 2019). Concerning the peak location, a good agreement (<1 cm) is obtained between thermal inversions and flush-mounted LP measurements. The peak heat flux from the whole set of diagnostics is in good agreement and mainly in the ±20% range, while the heat flux decay length reported on the target shows significant discrepancy between diagnostics and location in the machine (±40% range). Despite such discrepancy, heat flux decay length at target is found to scale mainly with the magnetic flux expansion through the variation of the X-point height, as expected. The improved plasma performances achieved during C4 enabled to reach significant heat load in the divertor, up to 6 MW m−2 with 4 MW of additional heating power showing the capability to reach the ITER relevant heat load (10 MW m−2 steady state) with about 7 MW of additional power in L-mode discharge. The heat load distribution is clearly asymmetric with a 3/4 and 1/4 distribution on the outer and inner strike point region respectively for the parallel heat flux.
000904047 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904047 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904047 7001_ $$00000-0002-6566-6116$$aCorre, Y.$$b1
000904047 7001_ $$0P:(DE-HGF)0$$aFedorczak, N.$$b2
000904047 7001_ $$0P:(DE-HGF)0$$aGunn, J. P.$$b3
000904047 7001_ $$0P:(DE-HGF)0$$aBourdelle, C.$$b4
000904047 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b5$$eCorresponding author
000904047 7001_ $$0P:(DE-HGF)0$$aBucalossi, J.$$b6
000904047 7001_ $$0P:(DE-HGF)0$$aChanet, N.$$b7
000904047 7001_ $$0P:(DE-HGF)0$$aDejarnac, R.$$b8
000904047 7001_ $$0P:(DE-HGF)0$$aFirdaouss, M.$$b9
000904047 7001_ $$0P:(DE-HGF)0$$aGardarein, J.-L.$$b10
000904047 7001_ $$0P:(DE-HGF)0$$aLaffont, G.$$b11
000904047 7001_ $$0P:(DE-HGF)0$$aLoarer, T.$$b12
000904047 7001_ $$0P:(DE-HGF)0$$aPocheau, C.$$b13
000904047 7001_ $$0P:(DE-HGF)0$$aTsitrone, E.$$b14
000904047 7001_ $$0P:(DE-HGF)0$$aTeam, the WEST$$b15
000904047 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/ac1803$$gVol. 61, no. 9, p. 096027 -$$n9$$p096027 -$$tNuclear fusion$$v61$$x0029-5515$$y2021
000904047 8564_ $$uhttps://juser.fz-juelich.de/record/904047/files/FEC2021_J_GASPAR_heat_loads_V3.pdf$$yOpenAccess
000904047 8564_ $$uhttps://juser.fz-juelich.de/record/904047/files/Gaspar_2021_Nucl._Fusion_61_096027.pdf$$yRestricted
000904047 909CO $$ooai:juser.fz-juelich.de:904047$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904047 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b5$$kFZJ
000904047 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904047 9141_ $$y2021
000904047 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904047 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000904047 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2019$$d2021-01-27
000904047 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904047 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904047 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904047 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904047 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000904047 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000904047 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger
000904047 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904047 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000904047 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904047 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904047 9801_ $$aFullTexts
000904047 980__ $$ajournal
000904047 980__ $$aVDB
000904047 980__ $$aUNRESTRICTED
000904047 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904047 981__ $$aI:(DE-Juel1)IFN-1-20101013