001     904047
005     20240711113818.0
024 7 _ |a 10.1088/1741-4326/ac1803
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a 2128/29737
|2 Handle
024 7 _ |a altmetric:111795689
|2 altmetric
024 7 _ |a WOS:000684701900001
|2 WOS
037 _ _ |a FZJ-2021-05617
082 _ _ |a 620
100 1 _ |a Gaspar, J.
|0 0000-0003-0104-1616
|b 0
|e Corresponding author
245 _ _ |a Divertor power loads and scrape off layer width in the large aspect ratio full tungsten tokamak WEST
260 _ _ |a Vienna
|c 2021
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641204473_5797
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a WEST is a full W tokamak with an extensive set of diagnostics for heat load measurements especially in the lower divertor. It is composed by infrared thermography, thermal measurement with thermocouples and fibre Bragg grating embedded few mm below the surface and flush mounted Langmuir probes. A large database including different magnetic equilibrium and input power is investigated to compare the heat load pattern (location, amplitude of the peak and heat flux decay length) on the inner and outer strike point regions: from the first ohmic diverted plasma (obtained during the second experimental campaign C2 in 2018) up to the high power (8 MW total injected) and high energy (up to 90 MJ injected energy in lower single null configuration) experiments performed in the last experimental campaign (C4 in 2019). Concerning the peak location, a good agreement (<1 cm) is obtained between thermal inversions and flush-mounted LP measurements. The peak heat flux from the whole set of diagnostics is in good agreement and mainly in the ±20% range, while the heat flux decay length reported on the target shows significant discrepancy between diagnostics and location in the machine (±40% range). Despite such discrepancy, heat flux decay length at target is found to scale mainly with the magnetic flux expansion through the variation of the X-point height, as expected. The improved plasma performances achieved during C4 enabled to reach significant heat load in the divertor, up to 6 MW m−2 with 4 MW of additional heating power showing the capability to reach the ITER relevant heat load (10 MW m−2 steady state) with about 7 MW of additional power in L-mode discharge. The heat load distribution is clearly asymmetric with a 3/4 and 1/4 distribution on the outer and inner strike point region respectively for the parallel heat flux.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Corre, Y.
|0 0000-0002-6566-6116
|b 1
700 1 _ |a Fedorczak, N.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gunn, J. P.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bourdelle, C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 5
|e Corresponding author
700 1 _ |a Bucalossi, J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Chanet, N.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Dejarnac, R.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Firdaouss, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gardarein, J.-L.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Laffont, G.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Loarer, T.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Pocheau, C.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Tsitrone, E.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Team, the WEST
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1088/1741-4326/ac1803
|g Vol. 61, no. 9, p. 096027 -
|0 PERI:(DE-600)2037980-8
|n 9
|p 096027 -
|t Nuclear fusion
|v 61
|y 2021
|x 0029-5515
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/904047/files/FEC2021_J_GASPAR_heat_loads_V3.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/904047/files/Gaspar_2021_Nucl._Fusion_61_096027.pdf
909 C O |o oai:juser.fz-juelich.de:904047
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129976
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2019
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21