000904050 001__ 904050
000904050 005__ 20240711113818.0
000904050 0247_ $$2doi$$a10.1016/j.nme.2021.100982
000904050 0247_ $$2Handle$$a2128/29821
000904050 0247_ $$2WOS$$aWOS:000663767800001
000904050 037__ $$aFZJ-2021-05620
000904050 082__ $$a624
000904050 1001_ $$0P:(DE-HGF)0$$aHolm, A.$$b0$$eCorresponding author
000904050 245__ $$aComparison of a collisional-radiative fluid model of H2 in UEDGE to the kinetic neutral code EIRENE
000904050 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000904050 3367_ $$2DRIVER$$aarticle
000904050 3367_ $$2DataCite$$aOutput Types/Journal article
000904050 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641299375_23856
000904050 3367_ $$2BibTeX$$aARTICLE
000904050 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904050 3367_ $$00$$2EndNote$$aJournal Article
000904050 520__ $$aA fluid collisional-radiative model for H2 has been implemented in the edge-fluid code UEDGE and compared to the kinetic neutral code EIRENE on a simple, 2D, orthogonal domain with a constant, static plasma distribution. The novel CRUMPET Python tool was used to implement dissociation and energy rate coefficients that consider molecular-assisted processes, binding energy, and radiation due to molecular processes into the UEDGE fluid molecular model. The agreement between the fluid and kinetic molecular models was found to be within 20% when corresponding rates were used in UEDGE and EIRENE for a domain with absorbing boundaries. When wall recycling was considered, EIRENE predicted up to a factor of 2.2 higher molecular densities than UEDGE at T < 5 eV. The difference is due to the absence of radial gradients driving diffusive wall fluxes and, thus, recycling in UEDGE and molecular self-scattering in EIRENE, and is likely dependent on plasma profiles and domain geometry. Comparison of the molecular energy sources in EIRENE and UEDGE suggest the constant elastic scattering rate coefficient used in UEDGE needs to be updated to a temperature-dependent coefficient and that atom-molecule equipartition should be considered in the EIRENE model for background plasma density in excess of . Finally, collisional-radiative CRUMPET simulations indicate that the vibrational molecular populations become comparable to the ground-state molecular population when the plasma temperature decrease below 6 eV and, thus, require time-dependent evaluation.
000904050 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904050 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904050 7001_ $$0P:(DE-HGF)0$$aBörner, P.$$b1
000904050 7001_ $$0P:(DE-HGF)0$$aRognlien, T. D.$$b2
000904050 7001_ $$0P:(DE-Juel1)132196$$aMeyer, W. H$$b3
000904050 7001_ $$0P:(DE-Juel1)171218$$aGroth, M.$$b4
000904050 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2021.100982$$gVol. 27, p. 100982 -$$p100982 -$$tNuclear materials and energy$$v27$$x2352-1791$$y2021
000904050 8564_ $$uhttps://juser.fz-juelich.de/record/904050/files/1-s2.0-S235217912100065X-main.pdf$$yOpenAccess
000904050 909CO $$ooai:juser.fz-juelich.de:904050$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000904050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171218$$aForschungszentrum Jülich$$b4$$kFZJ
000904050 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904050 9141_ $$y2021
000904050 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000904050 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000904050 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904050 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000904050 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000904050 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000904050 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000904050 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000904050 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904050 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-02
000904050 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000904050 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000904050 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000904050 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904050 9801_ $$aFullTexts
000904050 980__ $$ajournal
000904050 980__ $$aVDB
000904050 980__ $$aUNRESTRICTED
000904050 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904050 981__ $$aI:(DE-Juel1)IFN-1-20101013