000904051 001__ 904051
000904051 005__ 20240711113818.0
000904051 0247_ $$2doi$$a10.1016/j.nme.2021.100969
000904051 0247_ $$2Handle$$a2128/29868
000904051 0247_ $$2WOS$$aWOS:000657474100002
000904051 037__ $$aFZJ-2021-05621
000904051 082__ $$a624
000904051 1001_ $$00000-0001-7660-5565$$aHorsten, N.$$b0$$eCorresponding author
000904051 245__ $$aApplication of spatially hybrid fluid–kinetic neutral model on JET L-mode plasmas
000904051 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000904051 3367_ $$2DRIVER$$aarticle
000904051 3367_ $$2DataCite$$aOutput Types/Journal article
000904051 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641374231_10771
000904051 3367_ $$2BibTeX$$aARTICLE
000904051 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904051 3367_ $$00$$2EndNote$$aJournal Article
000904051 520__ $$aWe present a spatially hybrid fluid–kinetic neutral model that consists of a fluid model for the hydrogen atoms in the plasma grid region coupled to a kinetic model for atoms sampled at the plasma–void interfaces and a fully kinetic model for the hydrogen molecules. The atoms resulting from molecular dissociation are either treated kinetically (approach 1) or are incorporated in the fluid model (approach 2). For a low-density JET L-mode case, the hybrid method reduces the maximum fluid–kinetic discrepancies for the divertor strike-point electron densities and electron temperatures from approximately 150% to approximately 20% for approach 1 and to approximately 40% for approach 2. Although the simulations with purely fluid neutral model become more accurate for increasing upstream plasma density, we still observe a significant improvement by using the hybrid approach. When consuming the same CPU time in averaging the electron strike-point densities and temperatures over multiple iterations as for the simulations with fully kinetic neutrals, hybrid approach 1 reduces the statistical error with on average a factor 2.5. Hybrid approach 2 further increases this factor to approximately 3.3, at the expense of accuracy.
000904051 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904051 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904051 7001_ $$0P:(DE-Juel1)171218$$aGroth, M.$$b1
000904051 7001_ $$0P:(DE-Juel1)156199$$aBlommaert, M.$$b2
000904051 7001_ $$0P:(DE-Juel1)162424$$aDekeyser, W.$$b3
000904051 7001_ $$0P:(DE-Juel1)178746$$aPérez, I. Paradela$$b4
000904051 7001_ $$0P:(DE-Juel1)5247$$aWiesen, S.$$b5$$eCorresponding author
000904051 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2021.100969$$gVol. 27, p. 100969 -$$p100969 -$$tNuclear materials and energy$$v27$$x2352-1791$$y2021
000904051 8564_ $$uhttps://juser.fz-juelich.de/record/904051/files/1-s2.0-S2352179121000545-main.pdf$$yOpenAccess
000904051 909CO $$ooai:juser.fz-juelich.de:904051$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171218$$aForschungszentrum Jülich$$b1$$kFZJ
000904051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178746$$aForschungszentrum Jülich$$b4$$kFZJ
000904051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5247$$aForschungszentrum Jülich$$b5$$kFZJ
000904051 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904051 9141_ $$y2021
000904051 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000904051 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000904051 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904051 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000904051 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000904051 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000904051 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000904051 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000904051 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904051 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-02
000904051 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000904051 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000904051 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000904051 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904051 9801_ $$aFullTexts
000904051 980__ $$ajournal
000904051 980__ $$aVDB
000904051 980__ $$aUNRESTRICTED
000904051 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904051 981__ $$aI:(DE-Juel1)IFN-1-20101013