Home > Publications database > Application of spatially hybrid fluid–kinetic neutral model on JET L-mode plasmas > print |
001 | 904051 | ||
005 | 20240711113818.0 | ||
024 | 7 | _ | |a 10.1016/j.nme.2021.100969 |2 doi |
024 | 7 | _ | |a 2128/29868 |2 Handle |
024 | 7 | _ | |a WOS:000657474100002 |2 WOS |
037 | _ | _ | |a FZJ-2021-05621 |
082 | _ | _ | |a 624 |
100 | 1 | _ | |a Horsten, N. |0 0000-0001-7660-5565 |b 0 |e Corresponding author |
245 | _ | _ | |a Application of spatially hybrid fluid–kinetic neutral model on JET L-mode plasmas |
260 | _ | _ | |a Amsterdam [u.a.] |c 2021 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1641374231_10771 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We present a spatially hybrid fluid–kinetic neutral model that consists of a fluid model for the hydrogen atoms in the plasma grid region coupled to a kinetic model for atoms sampled at the plasma–void interfaces and a fully kinetic model for the hydrogen molecules. The atoms resulting from molecular dissociation are either treated kinetically (approach 1) or are incorporated in the fluid model (approach 2). For a low-density JET L-mode case, the hybrid method reduces the maximum fluid–kinetic discrepancies for the divertor strike-point electron densities and electron temperatures from approximately 150% to approximately 20% for approach 1 and to approximately 40% for approach 2. Although the simulations with purely fluid neutral model become more accurate for increasing upstream plasma density, we still observe a significant improvement by using the hybrid approach. When consuming the same CPU time in averaging the electron strike-point densities and temperatures over multiple iterations as for the simulations with fully kinetic neutrals, hybrid approach 1 reduces the statistical error with on average a factor 2.5. Hybrid approach 2 further increases this factor to approximately 3.3, at the expense of accuracy. |
536 | _ | _ | |a 134 - Plasma-Wand-Wechselwirkung (POF4-134) |0 G:(DE-HGF)POF4-134 |c POF4-134 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Groth, M. |0 P:(DE-Juel1)171218 |b 1 |
700 | 1 | _ | |a Blommaert, M. |0 P:(DE-Juel1)156199 |b 2 |
700 | 1 | _ | |a Dekeyser, W. |0 P:(DE-Juel1)162424 |b 3 |
700 | 1 | _ | |a Pérez, I. Paradela |0 P:(DE-Juel1)178746 |b 4 |
700 | 1 | _ | |a Wiesen, S. |0 P:(DE-Juel1)5247 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.nme.2021.100969 |g Vol. 27, p. 100969 - |0 PERI:(DE-600)2808888-8 |p 100969 - |t Nuclear materials and energy |v 27 |y 2021 |x 2352-1791 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/904051/files/1-s2.0-S2352179121000545-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:904051 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171218 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)178746 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)5247 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Fusion |1 G:(DE-HGF)POF4-130 |0 G:(DE-HGF)POF4-134 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Plasma-Wand-Wechselwirkung |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-09-02 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-09-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-09-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-09-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2020-09-02 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2020-09-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-02 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|