000904052 001__ 904052
000904052 005__ 20240711113818.0
000904052 0247_ $$2doi$$a10.1088/1741-4326/abdded
000904052 0247_ $$2ISSN$$a0029-5515
000904052 0247_ $$2ISSN$$a1741-4326
000904052 0247_ $$2Handle$$a2128/30111
000904052 0247_ $$2altmetric$$aaltmetric:100808956
000904052 0247_ $$2WOS$$aWOS:000621477800001
000904052 037__ $$aFZJ-2021-05622
000904052 082__ $$a620
000904052 1001_ $$0P:(DE-Juel1)130040$$aHuber, A.$$b0$$eCorresponding author
000904052 245__ $$aScaling of impurity fractions for divertor detachment in high-density high-power operation scenarios
000904052 260__ $$aVienna$$bIAEA$$c2021
000904052 3367_ $$2DRIVER$$aarticle
000904052 3367_ $$2DataCite$$aOutput Types/Journal article
000904052 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648190778_2173
000904052 3367_ $$2BibTeX$$aARTICLE
000904052 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904052 3367_ $$00$$2EndNote$$aJournal Article
000904052 520__ $$aFor future reactor designs and for planning of operational scenarios in the present and future machines, impurity fractions in the tokamak divertor plasma, cZ, is an essential input for predictive scalings of divertor detachment. A new quantitative scaling law for cZ, averaged over the scrape-off layer (SOL), required to attain detachment is developed for high power H-mode plasmas operated at high densities close to the density limit. It is based on a simple SOL radiation model which uses the combination of the empirical scaling laws for the H-mode power threshold and the separatrix density limit imposed by MHD instabilities. Additionally, it assumes, in agreement with experimental observations that the width of the power conducting layer outside of the separatrix scales approximately with the ion poloidal gyro-radius. The derived expression for cZ scales strongly with toroidal magnetic field, B, major radius R, the factor of access of the power flow through the separatrix over that required for the L–H transition, fLH, and isotope mass A: ${c}_{Z}\propto {B}^{1.47}{R}^{1.59}{f}_{\mathrm{L}\mathrm{H}}^{1.38}/{A}^{1.38}$. Estimates of required impurity fractions for divertor detachment for an number of impurity species (N2, Ne and Ar) in future tokamak reactors ITER and DEMO are made in the paper.
000904052 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000904052 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x1
000904052 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904052 7001_ $$0P:(DE-HGF)0$$aChankin, A. V.$$b1
000904052 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/abdded$$gVol. 61, no. 3, p. 036049 -$$n3$$p036049 -$$tNuclear fusion$$v61$$x0029-5515$$y2021
000904052 8564_ $$uhttps://juser.fz-juelich.de/record/904052/files/Huber_2021_Nucl._Fusion_61_036049.pdf$$yRestricted
000904052 8564_ $$uhttps://juser.fz-juelich.de/record/904052/files/Scaling%20of%20impurity%20fractions_PP_Huber.pdf$$yPublished on 2021-02-23. Available in OpenAccess from 2022-02-23.
000904052 909CO $$ooai:juser.fz-juelich.de:904052$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904052 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich$$b0$$kFZJ
000904052 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000904052 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x1
000904052 9141_ $$y2021
000904052 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904052 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000904052 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904052 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2019$$d2021-01-27
000904052 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904052 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904052 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904052 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000904052 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000904052 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger
000904052 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904052 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000904052 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904052 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904052 9801_ $$aFullTexts
000904052 980__ $$ajournal
000904052 980__ $$aVDB
000904052 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904052 980__ $$aUNRESTRICTED
000904052 981__ $$aI:(DE-Juel1)IFN-1-20101013