001     904052
005     20240711113818.0
024 7 _ |a 10.1088/1741-4326/abdded
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a 2128/30111
|2 Handle
024 7 _ |a altmetric:100808956
|2 altmetric
024 7 _ |a WOS:000621477800001
|2 WOS
037 _ _ |a FZJ-2021-05622
082 _ _ |a 620
100 1 _ |a Huber, A.
|0 P:(DE-Juel1)130040
|b 0
|e Corresponding author
245 _ _ |a Scaling of impurity fractions for divertor detachment in high-density high-power operation scenarios
260 _ _ |a Vienna
|c 2021
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648190778_2173
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For future reactor designs and for planning of operational scenarios in the present and future machines, impurity fractions in the tokamak divertor plasma, cZ, is an essential input for predictive scalings of divertor detachment. A new quantitative scaling law for cZ, averaged over the scrape-off layer (SOL), required to attain detachment is developed for high power H-mode plasmas operated at high densities close to the density limit. It is based on a simple SOL radiation model which uses the combination of the empirical scaling laws for the H-mode power threshold and the separatrix density limit imposed by MHD instabilities. Additionally, it assumes, in agreement with experimental observations that the width of the power conducting layer outside of the separatrix scales approximately with the ion poloidal gyro-radius. The derived expression for cZ scales strongly with toroidal magnetic field, B, major radius R, the factor of access of the power flow through the separatrix over that required for the L–H transition, fLH, and isotope mass A: ${c}_{Z}\propto {B}^{1.47}{R}^{1.59}{f}_{\mathrm{L}\mathrm{H}}^{1.38}/{A}^{1.38}$. Estimates of required impurity fractions for divertor detachment for an number of impurity species (N2, Ne and Ar) in future tokamak reactors ITER and DEMO are made in the paper.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Chankin, A. V.
|0 P:(DE-HGF)0
|b 1
773 _ _ |a 10.1088/1741-4326/abdded
|g Vol. 61, no. 3, p. 036049 -
|0 PERI:(DE-600)2037980-8
|n 3
|p 036049 -
|t Nuclear fusion
|v 61
|y 2021
|x 0029-5515
856 4 _ |u https://juser.fz-juelich.de/record/904052/files/Huber_2021_Nucl._Fusion_61_036049.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/904052/files/Scaling%20of%20impurity%20fractions_PP_Huber.pdf
|y Published on 2021-02-23. Available in OpenAccess from 2022-02-23.
909 C O |o oai:juser.fz-juelich.de:904052
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130040
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2019
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21