000904057 001__ 904057
000904057 005__ 20240711113819.0
000904057 0247_ $$2doi$$a10.1016/j.nme.2021.101010
000904057 0247_ $$2Handle$$a2128/29862
000904057 0247_ $$2altmetric$$aaltmetric:108613785
000904057 0247_ $$2WOS$$aWOS:000663781100009
000904057 037__ $$aFZJ-2021-05627
000904057 082__ $$a624
000904057 1001_ $$0P:(DE-HGF)0$$aLawson, K. D.$$b0
000904057 245__ $$aUse of the Culham He model He II atomic data in JET EDGE2D-EIRENE simulations
000904057 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000904057 3367_ $$2DRIVER$$aarticle
000904057 3367_ $$2DataCite$$aOutput Types/Journal article
000904057 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641372270_2751
000904057 3367_ $$2BibTeX$$aARTICLE
000904057 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904057 3367_ $$00$$2EndNote$$aJournal Article
000904057 520__ $$aPresent-day large plasma machines use a divertor containing a cold, dense plasma to act as a buffer between the hot core and the plasma-facing material surfaces, providing protection for the latter. The behaviour of the divertor plasma, including the power radiated by fuel and impurity species, is therefore crucial in determining the performance of the next-step machines such as ITER, requiring transport modelling of the plasma edge and divertor. Transport codes that simulate the edge and divertor plasmas rely on the availability of accurate atomic and molecular data both for the fuel and impurity species. It is important to understand the sensitivity of the simulations to these data, since this determines the quality of the atomic and molecular data required. Recent work has led to the generation of the CHEM (Culham He Model) atomic dataset for hydrogenic He II (He+) [1], [2]. The sensitivity of the simulation codes to the atomic data is being tested by comparing their use in EDGE2D-EIRENE simulations with the presently used data from the ADAS database [3]. Helium is widely used in laboratory fusion experiments both as a fuel as in the first, non-nuclear phase of ITER, as a minority gas for RF heating and will occur as ash from the thermonuclear reactions. The atomic physics of He II is in many ways similar to that of D I, so this study will inform work on D fuelled simulations. He rather than D is considered first, since the former presents a more tractable atomic physics problem in that the heavy particle collisions [1] involve ions rather than neutrals. The use of He simulations also avoids the complications that can result from molecular emissions, allowing easier comparisons with experiment. However, it should be noted that the present simulation results are not compared with measurements in this paper.
000904057 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904057 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904057 7001_ $$0P:(DE-Juel1)171218$$aGroth, M.$$b1$$ufzj
000904057 7001_ $$0P:(DE-Juel1)177840$$aHarting, D.$$b2$$ufzj
000904057 7001_ $$0P:(DE-HGF)0$$aMenmuir, S.$$b3
000904057 7001_ $$0P:(DE-Juel1)5006$$aReiter, D.$$b4$$eCorresponding author$$ufzj
000904057 7001_ $$0P:(DE-HGF)0$$aAggarwal, K. M.$$b5
000904057 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b6$$ufzj
000904057 7001_ $$0P:(DE-HGF)0$$aCoffey, I. H.$$b7
000904057 7001_ $$0P:(DE-HGF)0$$aCorrigan, G.$$b8
000904057 7001_ $$0P:(DE-HGF)0$$aKeenan, F. P.$$b9
000904057 7001_ $$0P:(DE-Juel1)169313$$aMaggi, C. F.$$b10
000904057 7001_ $$0P:(DE-HGF)0$$aMeigs, A. G.$$b11
000904057 7001_ $$0P:(DE-HGF)0$$aO'Mullane, M. G.$$b12
000904057 7001_ $$0P:(DE-HGF)0$$aSimpson, J.$$b13
000904057 7001_ $$0P:(DE-Juel1)5247$$aWiesen, S.$$b14$$ufzj
000904057 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2021.101010$$gVol. 27, p. 101010 -$$p101010 -$$tNuclear materials and energy$$v27$$x2352-1791$$y2021
000904057 8564_ $$uhttps://juser.fz-juelich.de/record/904057/files/1-s2.0-S2352179121000879-main.pdf$$yOpenAccess
000904057 909CO $$ooai:juser.fz-juelich.de:904057$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171218$$aForschungszentrum Jülich$$b1$$kFZJ
000904057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177840$$aForschungszentrum Jülich$$b2$$kFZJ
000904057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5006$$aForschungszentrum Jülich$$b4$$kFZJ
000904057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b6$$kFZJ
000904057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5247$$aForschungszentrum Jülich$$b14$$kFZJ
000904057 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904057 9141_ $$y2021
000904057 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000904057 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000904057 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904057 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000904057 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000904057 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000904057 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000904057 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000904057 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904057 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-02
000904057 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000904057 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000904057 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000904057 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904057 9801_ $$aFullTexts
000904057 980__ $$ajournal
000904057 980__ $$aVDB
000904057 980__ $$aUNRESTRICTED
000904057 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904057 981__ $$aI:(DE-Juel1)IFN-1-20101013