000904058 001__ 904058
000904058 005__ 20240711113819.0
000904058 0247_ $$2doi$$a10.1088/1361-6587/ac2373
000904058 0247_ $$2ISSN$$a0032-1028
000904058 0247_ $$2ISSN$$a0368-3281
000904058 0247_ $$2ISSN$$a0741-3335
000904058 0247_ $$2ISSN$$a1361-6587
000904058 0247_ $$2ISSN$$a1879-2979
000904058 0247_ $$2ISSN$$a2057-7648
000904058 0247_ $$2altmetric$$aaltmetric:117891914
000904058 0247_ $$2WOS$$aWOS:000706859200001
000904058 037__ $$aFZJ-2021-05628
000904058 082__ $$a620
000904058 1001_ $$00000-0001-7271-8319$$aLi, Shuhao$$b0
000904058 245__ $$aModeling of SOL helical current filaments induced by biased electrode on J-TEXT
000904058 260__ $$aBristol$$bIOP Publ.$$c2021
000904058 3367_ $$2DRIVER$$aarticle
000904058 3367_ $$2DataCite$$aOutput Types/Journal article
000904058 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642845637_15782
000904058 3367_ $$2BibTeX$$aARTICLE
000904058 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904058 3367_ $$00$$2EndNote$$aJournal Article
000904058 500__ $$akein Zugriff auf Postprint
000904058 520__ $$aIt has been demonstrated in J-TEXT experiments that a biased electrode or electrode biasing (EB) in the scrape-off layer (SOL) can drive SOL helical current filaments (HCFs). The bright helical radiation belts of carbon impurities in the SOL indicate that SOL current flows along the magnetic field lines. Based on the experimental phenomenon, three SOL current models (model A, B, C) have been set-up in order to understand the spatial structure of SOL current and the perturbed magnetic field it generates. Model A is a simplified calculation of HCFs in the cylindrical geometry, and takes into account the presence of cross-field current by a linear decay of current along magnetic field lines. Model B take into account the actual toroidal geometry and the complex path of HCFs connected from the electrode to the limiters. By including the radial dependence of the resistivity into model B, model C is developed and describes the SOL current more perfectly than the other two models. Furthermore, the model C shows that SOL helical current can produces stronger boundary resonant magnetic perturbations (RMPs) at the last closed flux surface (LCFS) due to the consistent helixity of SOL current filaments and the boundary rational surface, which may be a new way to generate RMPs to control the edge-localized modes (ELMs). The equivalent inductance and resistance of HCFs at different edge safety factor qa are measured by applying a square wave voltage. The results show that the inductance and resistance of the HCFs are related to qa and the radial position of the biased electrode rEB, in a qualitatively consistent manner as that predicted by model C.
000904058 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904058 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904058 7001_ $$0P:(DE-Juel1)165601$$aWang, Nengchao$$b1
000904058 7001_ $$0P:(DE-HGF)0$$aDing, Yonghua$$b2
000904058 7001_ $$0P:(DE-HGF)0$$aSong, Zebao$$b3
000904058 7001_ $$0P:(DE-Juel1)130088$$aLiang, Yunfeng$$b4$$eCorresponding author$$ufzj
000904058 7001_ $$0P:(DE-HGF)0$$aYang, Qinghu$$b5
000904058 7001_ $$0P:(DE-HGF)0$$aMao, Feiyue$$b6
000904058 7001_ $$0P:(DE-Juel1)176857$$aHuang, Zhuo$$b7
000904058 7001_ $$0P:(DE-HGF)0$$aShen, Chengshuo$$b8
000904058 7001_ $$00000-0002-2330-0749$$aBala, Abba Alhaji$$b9
000904058 7001_ $$00000-0002-8330-0070$$aChen, Zhipeng$$b10
000904058 7001_ $$0P:(DE-HGF)0$$aChen, Zhongyong$$b11
000904058 7001_ $$00000-0002-9141-7869$$aYang, Zhoujun$$b12
000904058 7001_ $$0P:(DE-HGF)0$$aPan, Yuan$$b13
000904058 773__ $$0PERI:(DE-600)1473144-7$$a10.1088/1361-6587/ac2373$$gVol. 63, no. 11, p. 115017 -$$n11$$p115017 -$$tPlasma physics and controlled fusion$$v63$$x0032-1028$$y2021
000904058 8564_ $$uhttps://juser.fz-juelich.de/record/904058/files/Li_2021_Plasma_Phys._Control._Fusion_63_115017.pdf$$yRestricted
000904058 909CO $$ooai:juser.fz-juelich.de:904058$$pVDB
000904058 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130088$$aForschungszentrum Jülich$$b4$$kFZJ
000904058 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904058 9141_ $$y2021
000904058 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000904058 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000904058 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLASMA PHYS CONTR F : 2019$$d2021-01-28
000904058 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000904058 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000904058 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000904058 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000904058 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000904058 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000904058 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904058 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000904058 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904058 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000904058 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000904058 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904058 980__ $$ajournal
000904058 980__ $$aVDB
000904058 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904058 980__ $$aUNRESTRICTED
000904058 981__ $$aI:(DE-Juel1)IFN-1-20101013