001     904060
005     20240711113820.0
024 7 _ |a 10.1016/j.nme.2021.101080
|2 doi
024 7 _ |a 2128/29827
|2 Handle
024 7 _ |a WOS:000711373000001
|2 WOS
037 _ _ |a FZJ-2021-05630
082 _ _ |a 624
100 1 _ |a Liu, S. C.
|0 P:(DE-Juel1)166375
|b 0
245 _ _ |a Application of a newly developed radial directional electron probe to the edge unidirectional electron current measurement in EAST
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641301540_23792
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A newly developed radial directional electron probe (DEP) has been applied to the unidirectional electron current measurement on EAST tokamak. The DEP consists of two radial arrays of channels which have opposite directions and align along the local magnetic field line. Each radial array has 6 holes with a radial interval of 5 mm. Every channel has a hole with 0.5 mm radial width, 3 mm depth and 15° poloidal opening angle. The graphite collector embedded inside the hole is biased to positive potential to repel low energy ions, and high energy ions are blocked by the hole surface because their Larmor radii are larger than the radial width of hole. In consequence, the ion current collected by the DEP collector can be ignored in contrast with the electron current, as demonstrated by the I-V characteristics in a DEP commissioning experiment. The difference of collected current between two opposite channels signifies the unidirectional electron current in the flux tube. In a lower hybrid wave (LHW) modulation experiment, the amplitude and radial structure of unidirectional electron current induced by LHW is measured directly by this radial DEP array, and the LHW filament current covers over 20 mm radial region with a maximum of 20 A/cm2.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Liang, Yunfeng
|0 P:(DE-Juel1)130088
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Yan, N.
|b 2
700 1 _ |a Liao, L.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wei, W. Y.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Meng, L. Y.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Chen, L.
|0 P:(DE-Juel1)156284
|b 6
700 1 _ |a Xu, S.
|b 7
700 1 _ |a Zhao, N.
|b 8
700 1 _ |a Chen, R.
|b 9
700 1 _ |a Hu, G. H.
|b 10
700 1 _ |a Li, Y. L.
|0 P:(DE-Juel1)173935
|b 11
700 1 _ |a Liu, X. J.
|0 P:(DE-Juel1)171422
|b 12
|u fzj
700 1 _ |a Ming, T. F.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Sun, Y.
|b 14
700 1 _ |a Qian, J. P.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Zeng, L.
|0 P:(DE-Juel1)145673
|b 16
700 1 _ |a Li, G. Q.
|0 P:(DE-Juel1)177722
|b 17
700 1 _ |a Wang, L.
|b 18
700 1 _ |a Xu, G. S.
|b 19
700 1 _ |a Gong, X. Z.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Gao, X.
|b 21
773 _ _ |a 10.1016/j.nme.2021.101080
|g Vol. 29, p. 101080 -
|0 PERI:(DE-600)2808888-8
|p 101080 -
|t Nuclear materials and energy
|v 29
|y 2021
|x 2352-1791
856 4 _ |u https://juser.fz-juelich.de/record/904060/files/1-s2.0-S2352179121001472-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904060
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130088
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)171422
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-02
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-09-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-02
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21