000904061 001__ 904061
000904061 005__ 20240711113820.0
000904061 0247_ $$2doi$$a10.1088/1741-4326/ac2aba
000904061 0247_ $$2ISSN$$a0029-5515
000904061 0247_ $$2ISSN$$a1741-4326
000904061 0247_ $$2altmetric$$aaltmetric:115639085
000904061 0247_ $$2WOS$$aWOS:000709985400001
000904061 037__ $$aFZJ-2021-05631
000904061 082__ $$a620
000904061 1001_ $$0P:(DE-Juel1)166375$$aLiu, S. C.$$b0
000904061 245__ $$aModelling and application of a new method to measure the non-thermal electron current in the edge of magnetically confined plasma
000904061 260__ $$aVienna$$bIAEA$$c2021
000904061 3367_ $$2DRIVER$$aarticle
000904061 3367_ $$2DataCite$$aOutput Types/Journal article
000904061 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642841597_16988
000904061 3367_ $$2BibTeX$$aARTICLE
000904061 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904061 3367_ $$00$$2EndNote$$aJournal Article
000904061 500__ $$akein Zugriff auf Postprint
000904061 520__ $$aThe non-thermal electrons could form considerable current in the edge plasma of tokamak and stellarator. A new method, named directional electron probe (DEP), is proposed to measure the edge non-thermal electron current in magnetically confined plasma. The DEP consists of two opposite channels whose connection line aligns with the local magnetic field line. Each channel has a hole with small radial width and enough thickness to block high energy ions due to their large Larmor radii, and at the end of the hole the collector is biased to positive voltage to repel low energy ions. In this way, the collected current of DEP is mainly contributed by electrons. A particle orbit simulation is performed based on the Boris algorithm, which demonstrates the validity and rationality of the DEP. According to the simulation, the ion collection probability is quite small if compared with the electron collection probability, consequently the collected current is mainly contributed by electrons. The collected currents of thermal electrons under Maxwell–Boltzmann distribution from both channels are almost equal, and the net current is driven by non-thermal electrons. A radial array of DEP has been successfully applied to the scrape-off layer (SOL) non-thermal electron current measurement in EAST. The amplitude and structure of the non-thermal electron current are observed during the lower hybrid wave heating phase. The experimental SOL net current is compared with the simulated net current from a rough estimation, revealing the same radial structure of SOL current and demonstrating the validity of DEP.
000904061 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904061 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904061 7001_ $$0P:(DE-Juel1)130088$$aLiang, Yunfeng$$b1$$eCorresponding author$$ufzj
000904061 7001_ $$aZhang, H. X.$$b2
000904061 7001_ $$aYan, N.$$b3
000904061 7001_ $$0P:(DE-HGF)0$$aLiao, L.$$b4
000904061 7001_ $$aZhang, X. X.$$b5
000904061 7001_ $$0P:(DE-Juel1)171422$$aLiu, X. J.$$b6$$ufzj
000904061 7001_ $$00000-0003-3072-4520$$aWei, W. Y.$$b7
000904061 7001_ $$aZhao, N.$$b8
000904061 7001_ $$0P:(DE-Juel1)156284$$aChen, L.$$b9
000904061 7001_ $$0P:(DE-Juel1)190601$$aChen, R.$$b10$$ufzj
000904061 7001_ $$aHu, G. H.$$b11
000904061 7001_ $$0P:(DE-HGF)0$$aMing, T. F.$$b12
000904061 7001_ $$aSun, Y.$$b13
000904061 7001_ $$0P:(DE-HGF)0$$aQian, J. P.$$b14
000904061 7001_ $$0P:(DE-Juel1)145673$$aZeng, L.$$b15
000904061 7001_ $$0P:(DE-Juel1)177722$$aLi, G. Q.$$b16
000904061 7001_ $$aWang, L.$$b17
000904061 7001_ $$aXu, G. S.$$b18
000904061 7001_ $$0P:(DE-HGF)0$$aGong, X. Z.$$b19
000904061 7001_ $$aGao, X.$$b20
000904061 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/ac2aba$$gVol. 61, no. 12, p. 126004 -$$n12$$p126004 -$$tNuclear fusion$$v61$$x0029-5515$$y2021
000904061 8564_ $$uhttps://juser.fz-juelich.de/record/904061/files/Liu_2021_Nucl._Fusion_61_126004.pdf$$yRestricted
000904061 909CO $$ooai:juser.fz-juelich.de:904061$$pVDB
000904061 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130088$$aForschungszentrum Jülich$$b1$$kFZJ
000904061 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171422$$aForschungszentrum Jülich$$b6$$kFZJ
000904061 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190601$$aForschungszentrum Jülich$$b10$$kFZJ
000904061 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904061 9141_ $$y2021
000904061 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000904061 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger
000904061 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2019$$d2021-01-27
000904061 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904061 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000904061 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000904061 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904061 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904061 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000904061 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904061 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904061 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904061 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904061 980__ $$ajournal
000904061 980__ $$aVDB
000904061 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904061 980__ $$aUNRESTRICTED
000904061 981__ $$aI:(DE-Juel1)IFN-1-20101013