000904063 001__ 904063
000904063 005__ 20240711113820.0
000904063 0247_ $$2doi$$a10.1088/1741-4326/ac25c2
000904063 0247_ $$2ISSN$$a0029-5515
000904063 0247_ $$2ISSN$$a1741-4326
000904063 0247_ $$2altmetric$$aaltmetric:115183761
000904063 0247_ $$2WOS$$aWOS:000706463300001
000904063 037__ $$aFZJ-2021-05633
000904063 082__ $$a620
000904063 1001_ $$aMorgan, T. W.$$b0
000904063 245__ $$aCombined high fluence and high cycle number transient loading of ITER-like monoblocks in Magnum-PSI
000904063 260__ $$aVienna$$bIAEA$$c2021
000904063 3367_ $$2DRIVER$$aarticle
000904063 3367_ $$2DataCite$$aOutput Types/Journal article
000904063 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642784595_21862
000904063 3367_ $$2BibTeX$$aARTICLE
000904063 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904063 3367_ $$00$$2EndNote$$aJournal Article
000904063 500__ $$akein Zugriff auf Postprint
000904063 520__ $$aIt is highly desirable to understand the long term evolution of the divertor material under the extreme steady-state and transient heat and particle loads expected during ITER operation. Here the impact of ELM-like transient loading under combined high-flux plasma and transient ELM-like heat loading in Magnum-PSI was explored to determine how plasma affects the fatigue cracking threshold of tungsten due to ELMs. Mock-ups consisting of five ITER-like monoblocks in a chain were simultaneously exposed to high flux plasma and a high power pulsed laser which closely simulated the ELM impact in terms of heat flux and duration. Loading conditions were chosen to enable comparison to existing data from electron-beam loading, while the influence of surface base temperature (750 °C, 1150 °C or 1500 °C) and impurity seeding (addition of 6.5 ion% He+ and/or 8 ion% Ne+) were also investigated. The plasma loading leads to differences in surface morphology and indicates synergistic effects on the extent of the surface damage. Base temperatures at or above 1150 °C are found to lead to a significant reduction in the fatigue cracking threshold by a factor of two or more compared to at 750 °C. Cracked surfaces are found to be more than ten times rougher than the original microstructure, and additionally when seeding impurities are added surface roughness can be significantly increased by up closely factor of two compared to roughening using pure H plasma. Overall the results indicate that avoiding fatigue cracking in ITER will be very challenging, and that understanding the level to which this can therefore be tolerated is vital for anticipating divertor lifetime and reliability.
000904063 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904063 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904063 7001_ $$aLi, Y.$$b1
000904063 7001_ $$00000-0002-8755-9370$$aBalden, M.$$b2
000904063 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b3$$eCorresponding author
000904063 7001_ $$00000-0002-4173-0961$$aDe Temmerman, G.$$b4
000904063 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/ac25c2$$gVol. 61, no. 11, p. 116045 -$$n11$$p116045 -$$tNuclear fusion$$v61$$x0029-5515$$y2021
000904063 8564_ $$uhttps://juser.fz-juelich.de/record/904063/files/Morgan_2021_Nucl._Fusion_61_116045.pdf$$yRestricted
000904063 909CO $$ooai:juser.fz-juelich.de:904063$$pVDB
000904063 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b3$$kFZJ
000904063 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904063 9141_ $$y2021
000904063 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000904063 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger
000904063 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2019$$d2021-01-27
000904063 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904063 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000904063 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000904063 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904063 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904063 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000904063 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904063 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904063 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904063 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904063 980__ $$ajournal
000904063 980__ $$aVDB
000904063 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904063 980__ $$aUNRESTRICTED
000904063 981__ $$aI:(DE-Juel1)IFN-1-20101013