Hauptseite > Publikationsdatenbank > The role of edge plasma parameters in H-mode density limit on the JET-ILW > print |
001 | 904076 | ||
005 | 20240712112902.0 | ||
024 | 7 | _ | |a 10.1088/1741-4326/abf056 |2 doi |
024 | 7 | _ | |a 0029-5515 |2 ISSN |
024 | 7 | _ | |a 1741-4326 |2 ISSN |
024 | 7 | _ | |a 2128/29933 |2 Handle |
024 | 7 | _ | |a altmetric:104985066 |2 altmetric |
024 | 7 | _ | |a WOS:000645584300001 |2 WOS |
037 | _ | _ | |a FZJ-2021-05646 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Sun, H. J. |0 P:(DE-Juel1)188884 |b 0 |u fzj |
245 | _ | _ | |a The role of edge plasma parameters in H-mode density limit on the JET-ILW |
260 | _ | _ | |a Vienna |c 2021 |b IAEA |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1648536468_16798 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A study of a dataset of JET H-mode plasma with the Be/W ITER-like wall (JET-ILW) shows that reaching the edge MHD ballooning limit leads to confinement degradation. However, unlike JET plasmas with a carbon wall (JET-C), the JET-ILW plasmas stay in a marginal dithering phase for a relatively long period, associated with a higher (≈20%) H-mode density limit (HDL) than JET-C equivalents. This suggests that ITER could be operated in H-mode with higher density than the scaling based on carbon wall devices, but likely with a dithering phase plasma with lower confinement. A new, reliable estimator for JET Er, min has been derived by combining HRTS measurements of pedestal gradient and edge-SOL decay lengths. JET radial Er ETB wells are observed in the range of −15 to −60 kV m−1 in high performance H-modes, consistent with previous CXRS results in ASDEX Upgrade. The results imply that a higher positive E × B shear in the near SOL plays a role in sustaining a marginal phase in JET-ILW which leads to a higher HDL than that in JET-C. The results of the JET-ILW dataset show agreement with the Goldston finite collisionality HD model for SOL broadening at high collisionality. A hypothesis for the dithering H-mode phase is proposed: as ne,SOL increases, ν∗,SOL increases, SOL broadens, Er shear decreases, triggers L-mode; ne drops, ν∗,SOL decreases, SOL becomes narrower, and Er shear increases, triggering H-mode, resulting in a cycle of H–L–H- oscillations. For burning plasma devices, such as ITER, operating just below the MHD limit for the dithering phase could be a promising regime for maximising core density, and fusion performance while minimising plasma-material interaction. The oscillatory signal during the dithering phase could be used as a precursor of undesirable plasma performance for control purposes. |
536 | _ | _ | |a 134 - Plasma-Wand-Wechselwirkung (POF4-134) |0 G:(DE-HGF)POF4-134 |c POF4-134 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Goldston, R. J. |0 0000-0002-0368-5514 |b 1 |
700 | 1 | _ | |a Huber, A. |0 P:(DE-Juel1)130040 |b 2 |e Corresponding author |
700 | 1 | _ | |a Xu, X. Q. |0 P:(DE-Juel1)176178 |b 3 |u fzj |
700 | 1 | _ | |a Flanagan, J. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a McDonald, D. C. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a de la Luna, E. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Maslov, M. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Harrison, J. R. |0 0000-0003-2906-5097 |b 8 |
700 | 1 | _ | |a Militello, F. |0 0000-0002-8034-4756 |b 9 |
700 | 1 | _ | |a Fessey, J. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Cramp, S. |0 P:(DE-HGF)0 |b 11 |
773 | _ | _ | |a 10.1088/1741-4326/abf056 |g Vol. 61, no. 6, p. 066009 - |0 PERI:(DE-600)2037980-8 |n 6 |p 066009 - |t Nuclear fusion |v 61 |y 2021 |x 0029-5515 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/904076/files/87079_understanding_the_role_of_edge_plasma_on_hdl._2.pdf |y Published on 2021-04-28. Available in OpenAccess from 2022-04-28. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/904076/files/Sun_2021_Nucl._Fusion_61_066009.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:904076 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)188884 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130040 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)176178 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Fusion |1 G:(DE-HGF)POF4-130 |0 G:(DE-HGF)POF4-134 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Plasma-Wand-Wechselwirkung |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-27 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NUCL FUSION : 2019 |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-27 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|