000904077 001__ 904077
000904077 005__ 20240711113608.0
000904077 0247_ $$2doi$$a10.1088/1741-4326/ac1a1d
000904077 0247_ $$2ISSN$$a0029-5515
000904077 0247_ $$2ISSN$$a1741-4326
000904077 0247_ $$2altmetric$$aaltmetric:115086473
000904077 0247_ $$2WOS$$aWOS:000706467800001
000904077 037__ $$aFZJ-2021-05647
000904077 082__ $$a620
000904077 1001_ $$0P:(DE-Juel1)190682$$aSun, Y.$$b0$$eCorresponding author
000904077 245__ $$aFirst demonstration of full ELM suppression in low input torque plasmas to support ITER research plan using n = 4 RMP in EAST
000904077 260__ $$aVienna$$bIAEA$$c2021
000904077 3367_ $$2DRIVER$$aarticle
000904077 3367_ $$2DataCite$$aOutput Types/Journal article
000904077 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642780835_21910
000904077 3367_ $$2BibTeX$$aARTICLE
000904077 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904077 3367_ $$00$$2EndNote$$aJournal Article
000904077 500__ $$akein Zugriff auf Postprint
000904077 520__ $$aFull suppression of type-I edge localized modes (ELMs) using n = 4 resonant magnetic perturbations (RMPs) as planned for ITER has been demonstrated for the first time (n is the toroidal mode number of the applied RMP). This is achieved in EAST plasmas with low input torque and tungsten divertor, and the target plasma for these experiments in EAST is chosen to be relevant to the ITER Q = 10 operational scenario, thus also addressing significant scenario issues for ITER. In these experiments the lowest neutral beam injection (NBI) input torque is around TNBI ∼ 0.44 Nm, which extrapolates to around 14 Nm in ITER (compared to a total torque input of 35 Nm when 33 MW of NBI are used for heating). The q95 is around 3.6 and normalized plasma beta βN ∼ 1.5–1.8, similar to that in the ITER Q = 10 scenario. Suppression windows in both q95 and plasma density are observed; in addition, lower plasma rotation is found to be favourabe to access ELM suppression. ELM suppression is maintained with line averaged density up to 60%nGW (Greenwald density limit) by feedforward gas fuelling after suppression is achieved. It is interesting to note that in addition to an upper density, a low density threshold for ELM suppression of 40%nGW is also observed. In these conditions energy confinement does not significantly drop (<10%) during ELM suppression when compared to the ELMy H-mode conditions, which is much better than previous results using low n (n = 1 and 2) RMPs in higher q95 regimes. In addition, the core plasma tungsten concentration is clearly reduced during ELM suppression demonstrating an effective impurity exhaust. MHD response modelling using the MARS-F code shows that edge magnetic field stochasticity has a peak at q95 ∼ 3.65 for the odd parity configuration, which is consistent to the observed suppression window around 3.6–3.75. These results expand the physical understanding of ELM suppression and demonstrate the effectiveness of n = 4 RMPs for reliable control ELMs in future ITER high Q plasma scenarios with minimum detrimental effects on plasma confinement.
000904077 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904077 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904077 7001_ $$aMa, Q.$$b1
000904077 7001_ $$0P:(DE-Juel1)173884$$aJia, M.$$b2
000904077 7001_ $$00000-0001-5159-939X$$aGu, S.$$b3
000904077 7001_ $$00000-0001-9592-1117$$aLoarte, A.$$b4
000904077 7001_ $$0P:(DE-Juel1)130088$$aLiang, Yunfeng$$b5$$eCorresponding author
000904077 7001_ $$aLiu, Y. Q.$$b6
000904077 7001_ $$00000-0001-5069-4934$$aPaz-Soldan, C. A.$$b7
000904077 7001_ $$aWu, X. M.$$b8
000904077 7001_ $$00000-0002-0567-646X$$aXie, P. C.$$b9
000904077 7001_ $$00000-0001-6941-8745$$aYe, C.$$b10
000904077 7001_ $$aWang, H. H.$$b11
000904077 7001_ $$aZhao, J. Q.$$b12
000904077 7001_ $$00000-0002-0799-9342$$aGuo, W.$$b13
000904077 7001_ $$0P:(DE-HGF)0$$aHe, K.$$b14
000904077 7001_ $$aLi, Y. Y.$$b15
000904077 7001_ $$0P:(DE-Juel1)177722$$aLi, G.$$b16
000904077 7001_ $$aLiu, H.$$b17
000904077 7001_ $$0P:(DE-HGF)0$$aQian, J.$$b18
000904077 7001_ $$0P:(DE-Juel1)168171$$aSheng, H.$$b19
000904077 7001_ $$0P:(DE-HGF)0$$aShi, T.$$b20
000904077 7001_ $$aWang, Y. M.$$b21
000904077 7001_ $$00000-0003-4510-0884$$aWeisberg, D.$$b22
000904077 7001_ $$0P:(DE-Juel1)188407$$aWan, B.$$b23$$ufzj
000904077 7001_ $$0P:(DE-HGF)0$$aZang, Q.$$b24
000904077 7001_ $$0P:(DE-Juel1)145673$$aZeng, L.$$b25
000904077 7001_ $$aZhang, B.$$b26
000904077 7001_ $$aZhang, L.$$b27
000904077 7001_ $$aZhang, T.$$b28
000904077 7001_ $$0P:(DE-HGF)0$$aZhou, C.$$b29
000904077 7001_ $$0P:(DE-HGF)0$$aContributors, EAST$$b30
000904077 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/ac1a1d$$gVol. 61, no. 10, p. 106037 -$$n10$$p106037 -$$tNuclear fusion$$v61$$x0029-5515$$y2021
000904077 8564_ $$uhttps://juser.fz-juelich.de/record/904077/files/Sun_2021_Nucl._Fusion_61_106037.pdf$$yRestricted
000904077 909CO $$ooai:juser.fz-juelich.de:904077$$pVDB
000904077 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190682$$aForschungszentrum Jülich$$b0$$kFZJ
000904077 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)173884$$a IEK-4$$b2
000904077 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130088$$aForschungszentrum Jülich$$b5$$kFZJ
000904077 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188407$$aForschungszentrum Jülich$$b23$$kFZJ
000904077 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904077 9141_ $$y2021
000904077 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000904077 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger
000904077 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2019$$d2021-01-27
000904077 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904077 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000904077 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000904077 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904077 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904077 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000904077 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904077 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904077 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904077 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904077 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000904077 980__ $$ajournal
000904077 980__ $$aVDB
000904077 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904077 980__ $$aI:(DE-Juel1)IEK-1-20101013
000904077 980__ $$aUNRESTRICTED
000904077 981__ $$aI:(DE-Juel1)IFN-1-20101013
000904077 981__ $$aI:(DE-Juel1)IMD-2-20101013