001     904077
005     20240711113608.0
024 7 _ |a 10.1088/1741-4326/ac1a1d
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a altmetric:115086473
|2 altmetric
024 7 _ |a WOS:000706467800001
|2 WOS
037 _ _ |a FZJ-2021-05647
082 _ _ |a 620
100 1 _ |a Sun, Y.
|0 P:(DE-Juel1)190682
|b 0
|e Corresponding author
245 _ _ |a First demonstration of full ELM suppression in low input torque plasmas to support ITER research plan using n = 4 RMP in EAST
260 _ _ |a Vienna
|c 2021
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642780835_21910
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a kein Zugriff auf Postprint
520 _ _ |a Full suppression of type-I edge localized modes (ELMs) using n = 4 resonant magnetic perturbations (RMPs) as planned for ITER has been demonstrated for the first time (n is the toroidal mode number of the applied RMP). This is achieved in EAST plasmas with low input torque and tungsten divertor, and the target plasma for these experiments in EAST is chosen to be relevant to the ITER Q = 10 operational scenario, thus also addressing significant scenario issues for ITER. In these experiments the lowest neutral beam injection (NBI) input torque is around TNBI ∼ 0.44 Nm, which extrapolates to around 14 Nm in ITER (compared to a total torque input of 35 Nm when 33 MW of NBI are used for heating). The q95 is around 3.6 and normalized plasma beta βN ∼ 1.5–1.8, similar to that in the ITER Q = 10 scenario. Suppression windows in both q95 and plasma density are observed; in addition, lower plasma rotation is found to be favourabe to access ELM suppression. ELM suppression is maintained with line averaged density up to 60%nGW (Greenwald density limit) by feedforward gas fuelling after suppression is achieved. It is interesting to note that in addition to an upper density, a low density threshold for ELM suppression of 40%nGW is also observed. In these conditions energy confinement does not significantly drop (<10%) during ELM suppression when compared to the ELMy H-mode conditions, which is much better than previous results using low n (n = 1 and 2) RMPs in higher q95 regimes. In addition, the core plasma tungsten concentration is clearly reduced during ELM suppression demonstrating an effective impurity exhaust. MHD response modelling using the MARS-F code shows that edge magnetic field stochasticity has a peak at q95 ∼ 3.65 for the odd parity configuration, which is consistent to the observed suppression window around 3.6–3.75. These results expand the physical understanding of ELM suppression and demonstrate the effectiveness of n = 4 RMPs for reliable control ELMs in future ITER high Q plasma scenarios with minimum detrimental effects on plasma confinement.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ma, Q.
|b 1
700 1 _ |a Jia, M.
|0 P:(DE-Juel1)173884
|b 2
700 1 _ |a Gu, S.
|0 0000-0001-5159-939X
|b 3
700 1 _ |a Loarte, A.
|0 0000-0001-9592-1117
|b 4
700 1 _ |a Liang, Yunfeng
|0 P:(DE-Juel1)130088
|b 5
|e Corresponding author
700 1 _ |a Liu, Y. Q.
|b 6
700 1 _ |a Paz-Soldan, C. A.
|0 0000-0001-5069-4934
|b 7
700 1 _ |a Wu, X. M.
|b 8
700 1 _ |a Xie, P. C.
|0 0000-0002-0567-646X
|b 9
700 1 _ |a Ye, C.
|0 0000-0001-6941-8745
|b 10
700 1 _ |a Wang, H. H.
|b 11
700 1 _ |a Zhao, J. Q.
|b 12
700 1 _ |a Guo, W.
|0 0000-0002-0799-9342
|b 13
700 1 _ |a He, K.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Li, Y. Y.
|b 15
700 1 _ |a Li, G.
|0 P:(DE-Juel1)177722
|b 16
700 1 _ |a Liu, H.
|b 17
700 1 _ |a Qian, J.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Sheng, H.
|0 P:(DE-Juel1)168171
|b 19
700 1 _ |a Shi, T.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Wang, Y. M.
|b 21
700 1 _ |a Weisberg, D.
|0 0000-0003-4510-0884
|b 22
700 1 _ |a Wan, B.
|0 P:(DE-Juel1)188407
|b 23
|u fzj
700 1 _ |a Zang, Q.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Zeng, L.
|0 P:(DE-Juel1)145673
|b 25
700 1 _ |a Zhang, B.
|b 26
700 1 _ |a Zhang, L.
|b 27
700 1 _ |a Zhang, T.
|b 28
700 1 _ |a Zhou, C.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Contributors, EAST
|0 P:(DE-HGF)0
|b 30
773 _ _ |a 10.1088/1741-4326/ac1a1d
|g Vol. 61, no. 10, p. 106037 -
|0 PERI:(DE-600)2037980-8
|n 10
|p 106037 -
|t Nuclear fusion
|v 61
|y 2021
|x 0029-5515
856 4 _ |u https://juser.fz-juelich.de/record/904077/files/Sun_2021_Nucl._Fusion_61_106037.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:904077
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190682
910 1 _ |a IEK-4
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)173884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130088
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 23
|6 P:(DE-Juel1)188407
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21