000904078 001__ 904078
000904078 005__ 20240711113822.0
000904078 0247_ $$2doi$$a10.3390/met11060886
000904078 0247_ $$2Handle$$a2128/29832
000904078 0247_ $$2WOS$$aWOS:000665903300001
000904078 037__ $$aFZJ-2021-05648
000904078 082__ $$a530
000904078 1001_ $$0P:(DE-Juel1)180592$$aTan, Xiaoyue$$b0$$eCorresponding author
000904078 245__ $$aCharacteristics of Microstructure Evolution during FAST Joining of the Tungsten Foil Laminate
000904078 260__ $$aBasel$$bMDPI$$c2021
000904078 3367_ $$2DRIVER$$aarticle
000904078 3367_ $$2DataCite$$aOutput Types/Journal article
000904078 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641302654_23856
000904078 3367_ $$2BibTeX$$aARTICLE
000904078 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904078 3367_ $$00$$2EndNote$$aJournal Article
000904078 520__ $$aThe tungsten (W) foil laminate is an advanced material concept developed as a solution for the low temperature brittleness of W. However, the deformed W foils inevitably undergo microstructure deterioration (crystallization) during the joining process at a high temperature. In this work, joining of the W foil laminate was carried out in a field-assisted sintering technology (FAST) apparatus. The joining temperature was optimized by varying the temperature from 600 to 1400 °C. The critical current for mitigating the microstructure deterioration of the deformed W foil was evaluated by changing the sample size. It is found that the optimal joining temperature is 1200 °C and the critical current density is below 418 A/cm2. According to an optimized FAST joining process, the W foil laminate with a low microstructure deterioration and good interfacial bonding can be obtained. After analyzing these current profiles, it was evident that the high current density (sharp peak current) is the reason for the significant microstructure deterioration. An effective approach of using an artificial operation mode was proposed to avoid the sharp peak current. This study provides the fundamental knowledge of FAST principal parameters for producing advanced materials
000904078 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000904078 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904078 7001_ $$0P:(DE-HGF)0$$aWang, Wujie$$b1
000904078 7001_ $$0P:(DE-HGF)0$$aChen, Xiang$$b2
000904078 7001_ $$0P:(DE-Juel1)165931$$aMao, Yiran$$b3
000904078 7001_ $$0P:(DE-Juel1)130090$$aLitnovsky, Andrey$$b4
000904078 7001_ $$0P:(DE-Juel1)166427$$aKlein, Felix$$b5
000904078 7001_ $$0P:(DE-Juel1)186917$$aBittner, Pawel$$b6
000904078 7001_ $$0P:(DE-Juel1)2594$$aCoenen, Jan Willem$$b7
000904078 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Christian$$b8
000904078 7001_ $$0P:(DE-HGF)0$$aLiu, Jiaqin$$b9
000904078 7001_ $$00000-0002-4455-7391$$aLuo, Laima$$b10
000904078 7001_ $$0P:(DE-HGF)0$$aWu, Yucheng$$b11$$eCorresponding author
000904078 773__ $$0PERI:(DE-600)2662252-X$$a10.3390/met11060886$$gVol. 11, no. 6, p. 886 -$$n6$$p886 -$$tMetals$$v11$$x2075-4701$$y2021
000904078 8564_ $$uhttps://juser.fz-juelich.de/record/904078/files/metals-11-00886.pdf$$yOpenAccess
000904078 909CO $$ooai:juser.fz-juelich.de:904078$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180592$$aForschungszentrum Jülich$$b0$$kFZJ
000904078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165931$$aForschungszentrum Jülich$$b3$$kFZJ
000904078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130090$$aForschungszentrum Jülich$$b4$$kFZJ
000904078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166427$$aForschungszentrum Jülich$$b5$$kFZJ
000904078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186917$$aForschungszentrum Jülich$$b6$$kFZJ
000904078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b7$$kFZJ
000904078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b8$$kFZJ
000904078 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000904078 9141_ $$y2021
000904078 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000904078 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000904078 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-05-04
000904078 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904078 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETALS-BASEL : 2019$$d2021-05-04
000904078 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000904078 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000904078 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000904078 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000904078 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000904078 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000904078 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904078 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04
000904078 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000904078 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000904078 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000904078 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000904078 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904078 9801_ $$aFullTexts
000904078 980__ $$ajournal
000904078 980__ $$aVDB
000904078 980__ $$aUNRESTRICTED
000904078 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904078 981__ $$aI:(DE-Juel1)IFN-1-20101013