TY  - JOUR
AU  - Tan, Xiaoyue
AU  - Wang, Wujie
AU  - Chen, Xiang
AU  - Mao, Yiran
AU  - Litnovsky, Andrey
AU  - Klein, Felix
AU  - Bittner, Pawel
AU  - Coenen, Jan Willem
AU  - Linsmeier, Christian
AU  - Liu, Jiaqin
AU  - Luo, Laima
AU  - Wu, Yucheng
TI  - Characteristics of Microstructure Evolution during FAST Joining of the Tungsten Foil Laminate
JO  - Metals
VL  - 11
IS  - 6
SN  - 2075-4701
CY  - Basel
PB  - MDPI
M1  - FZJ-2021-05648
SP  - 886 -
PY  - 2021
AB  - The tungsten (W) foil laminate is an advanced material concept developed as a solution for the low temperature brittleness of W. However, the deformed W foils inevitably undergo microstructure deterioration (crystallization) during the joining process at a high temperature. In this work, joining of the W foil laminate was carried out in a field-assisted sintering technology (FAST) apparatus. The joining temperature was optimized by varying the temperature from 600 to 1400 °C. The critical current for mitigating the microstructure deterioration of the deformed W foil was evaluated by changing the sample size. It is found that the optimal joining temperature is 1200 °C and the critical current density is below 418 A/cm2. According to an optimized FAST joining process, the W foil laminate with a low microstructure deterioration and good interfacial bonding can be obtained. After analyzing these current profiles, it was evident that the high current density (sharp peak current) is the reason for the significant microstructure deterioration. An effective approach of using an artificial operation mode was proposed to avoid the sharp peak current. This study provides the fundamental knowledge of FAST principal parameters for producing advanced materials
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000665903300001
DO  - DOI:10.3390/met11060886
UR  - https://juser.fz-juelich.de/record/904078
ER  -