001     904080
005     20240711113822.0
024 7 _ |a 10.1088/1741-4326/abf74c
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a WOS:000655566800001
|2 WOS
037 _ _ |a FZJ-2021-05650
082 _ _ |a 620
100 1 _ |a Telesca, G.
|0 P:(DE-Juel1)130165
|b 0
|e Corresponding author
245 _ _ |a Impurity behaviour in JET-ILW plasmas fuelled with gas and/or with pellets: a comparative study with the transport code COREDIV
260 _ _ |a Vienna
|c 2021
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648536288_16798
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a kein Zugriff auf Postprint
520 _ _ |a This study deals with the comparison of impurity behaviour in pellet and gas fuelled JET-ITER like wall pulses with the aim of finding the mechanisms leading to the generally observed higher concentration of tungsten in pellet fuelled plasmas. In fact, tungsten is the main high-Z impurity in the JET-ILW plasmas and is responsible for most of the radiative losses in the plasma core. Analysis of the experimental data pertaining to pulses at different plasma currents, different input power and different electron densities is integrated by numerical modelling with the self-consistent fluid transport code COREDIV. Experimentally, and numerically, the ratio between the radiated power in the divertor and the total one—which results to be an increasing function of the ratio of the electron density at the strike point to the volume average one—is found to be a critical parameter determining impurity accumulation. The higher this value the lower the impurity density in the plasma core. Together with a little higher core impurity residence time, the numerical modelling indicates that the modest divertor screening for the pellet fuelled pulses at low electron flow—characterized by low electron density at the strike point and low perpendicular transport in the SOL—leads to divertor impurity leakage and higher impurity fluxes through the separatrix, in agreement with theory.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ivanova-Stanik, I.
|0 0000-0002-2766-8612
|b 1
700 1 _ |a Perez von Thun, Ch.
|0 0000-0002-1166-2179
|b 2
700 1 _ |a Aleiferis, S.
|0 0000-0001-7529-470X
|b 3
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 4
700 1 _ |a Chomiczewska, A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Huber, A.
|0 P:(DE-Juel1)130040
|b 6
700 1 _ |a Kowalska-Strzeciwilk, E.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Pawelec, E.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Sertoli, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Zagórski, R.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Contributors, JET
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1088/1741-4326/abf74c
|g Vol. 61, no. 6, p. 066027 -
|0 PERI:(DE-600)2037980-8
|n 6
|p 066027 -
|t Nuclear fusion
|v 61
|y 2021
|x 0029-5515
856 4 _ |u https://juser.fz-juelich.de/record/904080/files/Telesca_2021_Nucl._Fusion_61_066027.pdf
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:904080
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130040
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21