001     904083
005     20240711113749.0
024 7 _ |a 10.1007/s10894-021-00290-9
|2 doi
024 7 _ |a 0164-0313
|2 ISSN
024 7 _ |a 1572-9591
|2 ISSN
024 7 _ |a WOS:000636746300001
|2 WOS
037 _ _ |a FZJ-2021-05653
082 _ _ |a 530
100 1 _ |a Wang, L.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Progress of Divertor Heat and Particle Flux Control in EAST for Advanced Steady-State Operation in the Last 10 Years
260 _ _ |a New York, NY
|c 2021
|b Springer Science + Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1672837415_11195
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a kein Zugriff auf Postprint
520 _ _ |a Active control of the excessively high heat and particle fluxes on the divertor target plates is of fundamental importance to the steady state operation of tokamaks, especially for fusion reactors. A series of experiments have been carried out on this critical issue to relieve the plasma-wall interactions in the experimental advanced superconducting tokamak (EAST) in the last ten years, not only contributing to the long pulse operation of EAST itself, but also providing physical understandings and potential techniques to the next-generation devices like ITER. We have characterized the power deposition pattern and broadened the divertor footprint width effectively. The plasma-wetted area is actively handled using either 3-dimentional edge magnetic topology or advanced plasma equilibrium, thereby peak heat flux around the strike point is reduced. Active control of detachment or radiation compatible with core plasma performance has progressed significantly in very recent years, with a series of active feedback control modules developed and utilized successfully, based on the divertor physics advances with both experiments and simulation. The upper divertor of EAST was upgraded from graphite to active water-cooling ITER-like tungsten in 2014, exhibiting much enhanced heat removal capability. As for the particle exhaust including both fueling and impurity particles, in addition to wall conditioning and impurity source control, the efficiency of particle flux exhaust is optimized by making full use of the divertor closure and the plasma drifts in both scrape-off layer and divertor volume. These heat and particle exhaust advances contribute greatly to a series of EAST achievements like H-mode operation over 100 s. A brief near-term plan on the integrated control of divertor plasma-wall interactions in long-time scale will also be introduced, aiming to provide favorable divertor operation solution for ITER and CFETR.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Xu, G. S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hu, J. S.
|b 2
700 1 _ |a Li, K. D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Yuan, Q. P.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Liu, Jianwen
|0 P:(DE-Juel1)188320
|b 5
|e Corresponding author
700 1 _ |a Ding, F.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Yu, Y. W.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Luo, Z. P.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Xu, J. C.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Meng, L. Y.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Wu, K.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Zhang, B.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Chen, M. W.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Deng, G. Z.
|0 P:(DE-Juel1)162309
|b 14
700 1 _ |a Liu, X. J.
|0 P:(DE-Juel1)171422
|b 15
700 1 _ |a Yang, Z. S.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Liu, X.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Liu, S. C.
|0 P:(DE-Juel1)166375
|b 18
700 1 _ |a Ding, R.
|0 P:(DE-Juel1)184709
|b 19
700 1 _ |a Zuo, G. Z.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Sun, Z.
|0 P:(DE-Juel1)173771
|b 21
700 1 _ |a Wu, J. H.
|0 P:(DE-Juel1)177058
|b 22
700 1 _ |a Cao, B.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Zhang, Y.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Duan, Y. M.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Zhang, L.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Qian, X. Y.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Li, A.
|0 P:(DE-Juel1)186804
|b 28
700 1 _ |a Chen, L.
|0 P:(DE-Juel1)156284
|b 29
700 1 _ |a Jia, M. N.
|0 P:(DE-Juel1)173884
|b 30
700 1 _ |a Si, H.
|0 P:(DE-Juel1)171760
|b 31
700 1 _ |a Xia, T. Y.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Sun, Y. W.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Chen, Y. P.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Li, Q.
|0 P:(DE-Juel1)176714
|b 35
700 1 _ |a Luo, G. N.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Yao, D. M.
|0 P:(DE-Juel1)159475
|b 37
700 1 _ |a Xiao, B. J.
|0 P:(DE-Juel1)156242
|b 38
700 1 _ |a Gong, X. Z.
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Zhang, X. D.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Wan, B. N.
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Wang, H. Q.
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Guo, H. Y.
|0 P:(DE-Juel1)190704
|b 43
700 1 _ |a Eldon, D.
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Garofalo, A. M.
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Liang, Yunfeng
|0 P:(DE-Juel1)130088
|b 46
700 1 _ |a Xu, Shuai
|0 P:(DE-Juel1)171372
|b 47
700 1 _ |a Sang, C. F.
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Wang, D. Z.
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Dai, S. Y.
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Sun, J. Z.
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Ding, H. B.
|0 P:(DE-Juel1)164184
|b 52
700 1 _ |a Maingi, R.
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Gan, K. F.
|0 P:(DE-HGF)0
|b 54
700 1 _ |a Zou, X. L.
|0 P:(DE-HGF)0
|b 55
700 1 _ |a Du, H. L.
|0 P:(DE-HGF)0
|b 56
773 _ _ |a 10.1007/s10894-021-00290-9
|g Vol. 40, no. 1, p. 3
|0 PERI:(DE-600)2016894-9
|n 1
|p 3
|t Journal of fusion energy
|v 40
|y 2021
|x 0164-0313
856 4 _ |u https://juser.fz-juelich.de/record/904083/files/Wang2021_Article_ProgressOfDivertorHeatAndParti.pdf
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:904083
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)188320
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)171422
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)177058
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 28
|6 P:(DE-Juel1)186804
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 43
|6 P:(DE-Juel1)190704
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 46
|6 P:(DE-Juel1)130088
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 47
|6 P:(DE-Juel1)171372
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J FUSION ENERG : 2019
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21