001     904084
005     20240711113823.0
024 7 _ |a 10.1016/j.ijrmhm.2021.105552
|2 doi
024 7 _ |a 0263-4368
|2 ISSN
024 7 _ |a 0958-0611
|2 ISSN
024 7 _ |a 2213-3917
|2 ISSN
024 7 _ |a WOS:000663405100008
|2 WOS
037 _ _ |a FZJ-2021-05654
082 _ _ |a 670
100 1 _ |a Wang, W. J.
|b 0
245 _ _ |a On grain growth and phase precipitation behaviors during W-Cr-Zr alloy densification using field-assisted sintering technology
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642783617_11563
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a kein Zugriff auf Postprint
520 _ _ |a Field-assisted sintering technology (FAST), as a fast densification method with low process temperature, was used to manufacture self-passivating tungsten alloys (SPTAs) of W-Cr-Zr in this work. To clarify the behaviors of grain growth and Cr-rich phase precipitation under the action of electric current during the densification process, interrupted sintering at different temperatures (600–1000 °C) were performed. According to the viscous flow theory, the activation energy of W-Cr-Zr sample for densification is ~23 kJ/mol. The differential form of power law was adopted to evaluate the grain growth behavior. It is found that the W-Cr-Zr alloy consolidated by FAST has a low activation energy for grain growth of 82 kJ/mol. The Cr-rich phase could be confirmed by XRD spectra even when the sintering was interrupted at 600 °C. From the characterization of the cross-sectional microstructure, the Cr-rich phases tend to precipitate at sintering necks and defects (cracks/voids) in particle interiors. The low formation temperature of the Cr-rich phase is attributed to local overheating caused by local high electric current. This work provides significant insight into the mechanisms underlying the densification and the evolution of the microstructure of the SPTAs during the FAST process.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Tan, X. Y.
|b 1
700 1 _ |a Yang, S. P.
|0 P:(DE-Juel1)156421
|b 2
700 1 _ |a Luo, L. M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhu, X. Y.
|0 P:(DE-Juel1)180589
|b 4
|u fzj
700 1 _ |a Mao, Y. R.
|0 P:(DE-Juel1)165931
|b 5
|e Corresponding author
700 1 _ |a Litnovsky, A.
|0 P:(DE-Juel1)130090
|b 6
700 1 _ |a Coenen, J. W.
|0 P:(DE-Juel1)2594
|b 7
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 8
700 1 _ |a Wu, Yihui
|0 P:(DE-Juel1)177040
|b 9
773 _ _ |a 10.1016/j.ijrmhm.2021.105552
|g Vol. 98, p. 105552 -
|0 PERI:(DE-600)2015219-X
|p 105552 -
|t International journal of refractory metals & hard materials
|v 98
|y 2021
|x 0263-4368
856 4 _ |u https://juser.fz-juelich.de/record/904084/files/1-s2.0-S0263436821000846-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/904084/files/1-s2.0-S0263436821000846-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/904084/files/1-s2.0-S0263436821000846-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/904084/files/1-s2.0-S0263436821000846-main.jpg?subformat=icon-700
|x icon-700
|y Restricted
909 C O |o oai:juser.fz-juelich.de:904084
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180589
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165931
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)177040
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2021
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J REFRACT MET H : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21