000904087 001__ 904087
000904087 005__ 20240708133438.0
000904087 0247_ $$2doi$$a10.1016/j.fusengdes.2021.112680
000904087 0247_ $$2ISSN$$a0920-3796
000904087 0247_ $$2ISSN$$a1873-7196
000904087 0247_ $$2WOS$$aWOS:000670075800010
000904087 037__ $$aFZJ-2021-05657
000904087 082__ $$a530
000904087 1001_ $$0P:(DE-Juel1)168343$$aWei, Yanling$$b0$$eCorresponding author
000904087 245__ $$aAnalysis of HL-2A charge exchange spectra using parallel genetic algorithm
000904087 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000904087 3367_ $$2DRIVER$$aarticle
000904087 3367_ $$2DataCite$$aOutput Types/Journal article
000904087 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642751681_25344
000904087 3367_ $$2BibTeX$$aARTICLE
000904087 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904087 3367_ $$00$$2EndNote$$aJournal Article
000904087 500__ $$akein Zugriff auf Postprint
000904087 520__ $$aIn this work, we present a new method based on parallel genetic algorithm (GA) for in-between shot data analysis of the Charge-Exchange (CX) spectra on the HL-2A tokamak. The neutral beam induced active CX spectra is a powerful ion diagnostic technique to provide spatially resolved ion temperature and rotation velocity measurements on fusion devices. Currently CX spectra obtained in HL-2A experiments are mainly analyzed by the CXSFIT code [A. D. Whiteford, et.al, 2007]. While the analysis itself is fast, its accuracy relies on proper setup of the initial values for the spectral fitting parameters. Time-consuming manual interventions are needed. In the new parallel GA code, a two-loop GA analysis is used to gradually update the fitting parameter search ranges, which enables automatic analysis. A parallel algorithm based on the Linux Message Passing Interface (MPI) cluster is adapted to speed up the process. In a test run, for a set of 1600 data slices, the total time elapsed with 8 CPU nodes is about 310 s (0.2 s per data slice), which is efficient for in-between shot analysis on HL-2A. The uncertainty calculations using virtual CX signals with a noise level up to 5% show that the accuracies for ion temperature and rotation velocity are better than 10.14% and 2.14%, respectively. The ion temperature and rotation velocity obtained by applying the new parallel genetic algorithm on experimental CX data show good agreement with the conventional CXSFIT results.
000904087 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904087 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904087 7001_ $$0P:(DE-HGF)0$$aLiu, Liang$$b1
000904087 7001_ $$0P:(DE-HGF)0$$aYu, Deliang$$b2
000904087 7001_ $$0P:(DE-Juel1)167437$$avon Hellermann, Manfred$$b3
000904087 7001_ $$0P:(DE-HGF)0$$aChen, Wenjin$$b4
000904087 7001_ $$0P:(DE-HGF)0$$aWang, Jie$$b5
000904087 7001_ $$0P:(DE-Juel1)129628$$aMa, Qian$$b6$$ufzj
000904087 7001_ $$0P:(DE-HGF)0$$aHe, Xiaoxue$$b7
000904087 7001_ $$0P:(DE-HGF)0$$aHe, Xiaofei$$b8
000904087 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2021.112680$$gVol. 168, p. 112680 -$$p112680 -$$tFusion engineering and design$$v168$$x0920-3796$$y2021
000904087 909CO $$ooai:juser.fz-juelich.de:904087$$pVDB
000904087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b6$$kFZJ
000904087 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904087 9141_ $$y2021
000904087 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000904087 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904087 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904087 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000904087 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904087 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904087 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2019$$d2021-01-27
000904087 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904087 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000904087 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000904087 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904087 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904087 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000904087 980__ $$ajournal
000904087 980__ $$aVDB
000904087 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904087 980__ $$aI:(DE-Juel1)IEK-1-20101013
000904087 980__ $$aUNRESTRICTED
000904087 981__ $$aI:(DE-Juel1)IFN-1-20101013
000904087 981__ $$aI:(DE-Juel1)IMD-2-20101013