| Home > Publications database > Analysis of HL-2A charge exchange spectra using parallel genetic algorithm > print |
| 001 | 904087 | ||
| 005 | 20240708133438.0 | ||
| 024 | 7 | _ | |a 10.1016/j.fusengdes.2021.112680 |2 doi |
| 024 | 7 | _ | |a 0920-3796 |2 ISSN |
| 024 | 7 | _ | |a 1873-7196 |2 ISSN |
| 024 | 7 | _ | |a WOS:000670075800010 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-05657 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Wei, Yanling |0 P:(DE-Juel1)168343 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Analysis of HL-2A charge exchange spectra using parallel genetic algorithm |
| 260 | _ | _ | |a New York, NY [u.a.] |c 2021 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1642751681_25344 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a kein Zugriff auf Postprint |
| 520 | _ | _ | |a In this work, we present a new method based on parallel genetic algorithm (GA) for in-between shot data analysis of the Charge-Exchange (CX) spectra on the HL-2A tokamak. The neutral beam induced active CX spectra is a powerful ion diagnostic technique to provide spatially resolved ion temperature and rotation velocity measurements on fusion devices. Currently CX spectra obtained in HL-2A experiments are mainly analyzed by the CXSFIT code [A. D. Whiteford, et.al, 2007]. While the analysis itself is fast, its accuracy relies on proper setup of the initial values for the spectral fitting parameters. Time-consuming manual interventions are needed. In the new parallel GA code, a two-loop GA analysis is used to gradually update the fitting parameter search ranges, which enables automatic analysis. A parallel algorithm based on the Linux Message Passing Interface (MPI) cluster is adapted to speed up the process. In a test run, for a set of 1600 data slices, the total time elapsed with 8 CPU nodes is about 310 s (0.2 s per data slice), which is efficient for in-between shot analysis on HL-2A. The uncertainty calculations using virtual CX signals with a noise level up to 5% show that the accuracies for ion temperature and rotation velocity are better than 10.14% and 2.14%, respectively. The ion temperature and rotation velocity obtained by applying the new parallel genetic algorithm on experimental CX data show good agreement with the conventional CXSFIT results. |
| 536 | _ | _ | |a 134 - Plasma-Wand-Wechselwirkung (POF4-134) |0 G:(DE-HGF)POF4-134 |c POF4-134 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Liu, Liang |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Yu, Deliang |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a von Hellermann, Manfred |0 P:(DE-Juel1)167437 |b 3 |
| 700 | 1 | _ | |a Chen, Wenjin |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Wang, Jie |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Ma, Qian |0 P:(DE-Juel1)129628 |b 6 |u fzj |
| 700 | 1 | _ | |a He, Xiaoxue |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a He, Xiaofei |0 P:(DE-HGF)0 |b 8 |
| 773 | _ | _ | |a 10.1016/j.fusengdes.2021.112680 |g Vol. 168, p. 112680 - |0 PERI:(DE-600)1492280-0 |p 112680 - |t Fusion engineering and design |v 168 |y 2021 |x 0920-3796 |
| 909 | C | O | |o oai:juser.fz-juelich.de:904087 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)129628 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Fusion |1 G:(DE-HGF)POF4-130 |0 G:(DE-HGF)POF4-134 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Plasma-Wand-Wechselwirkung |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-27 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-27 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FUSION ENG DES : 2019 |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-27 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-27 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-27 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|