000904089 001__ 904089
000904089 005__ 20240711113824.0
000904089 0247_ $$2doi$$a10.1016/j.jmrt.2021.10.031
000904089 0247_ $$2ISSN$$a2214-0697
000904089 0247_ $$2ISSN$$a2238-7854
000904089 0247_ $$2Handle$$a2128/29840
000904089 0247_ $$2WOS$$aWOS:000712094100012
000904089 037__ $$aFZJ-2021-05659
000904089 082__ $$a670
000904089 1001_ $$0P:(DE-HGF)0$$aYang, Liu$$b0
000904089 245__ $$aEffect of Ta addition on microstructures, mechanical and damping properties of Cu–Al–Mn–Ti alloy
000904089 260__ $$aRio de Janeiro$$bElsevier$$c2021
000904089 3367_ $$2DRIVER$$aarticle
000904089 3367_ $$2DataCite$$aOutput Types/Journal article
000904089 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641305086_24212
000904089 3367_ $$2BibTeX$$aARTICLE
000904089 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904089 3367_ $$00$$2EndNote$$aJournal Article
000904089 520__ $$aCu–Al–Mn–Ti–xTa alloys (x = 0, 1, 2, 3, wt.%) prepared by spark plasma sintering were investigated for the effect of Ta content on the microstructure, mechanical and damping properties. The microstructure and phase composition indicate that the alloy is mainly composed of β′1 martensite, γ′1 martensite, Ti-rich and Ta-rich phase. As the Ta content increases, the grain size of the alloy first decreases and then increases. The reverse trend was observed for hardness, tensile and compressive strength. The hardness, tensile strength and compressive strength increased by 18.2%, 44.9% and 28%, respectively, when the Ta content was 1 wt.% compared to the alloy without Ta element. The presence of martensite provides the alloy with promising damping properties. Meanwhile, the formation of the second phase has a two-sided effect on the damping characteristics. That is, the increase in grain boundaries provides more interfaces for energy dissipation, but the increased compressive stress between the interfaces also hinders the movement of the interfaces. Excellent damping performance is demonstrated with the addition of 1 wt.% of Ta element. The peak values of damping capacity at room temperature and at about 580 °C reached 0.026 and 0.19, respectively. The results confirm that the addition of Ta elements is achievable to obtain Cu–Al–Mn–Ti alloys with both high mechanical and damping properties.
000904089 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904089 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904089 7001_ $$00000-0002-6703-9116$$aJiang, Xiaosong$$b1
000904089 7001_ $$0P:(DE-HGF)0$$aSun, Hongliang$$b2
000904089 7001_ $$0P:(DE-HGF)0$$aShao, Zhenyi$$b3
000904089 7001_ $$0P:(DE-HGF)0$$aFang, Yongjian$$b4
000904089 7001_ $$0P:(DE-Juel1)186824$$aShu, Rui$$b5$$eCorresponding author
000904089 773__ $$0PERI:(DE-600)2732709-7$$a10.1016/j.jmrt.2021.10.031$$gVol. 15, p. 3825 - 3835$$p3825 - 3835$$tJournal of materials research and technology$$v15$$x2214-0697$$y2021
000904089 8564_ $$uhttps://juser.fz-juelich.de/record/904089/files/1-s2.0-S2238785421011686-main.pdf$$yOpenAccess
000904089 909CO $$ooai:juser.fz-juelich.de:904089$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904089 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186824$$aForschungszentrum Jülich$$b5$$kFZJ
000904089 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904089 9141_ $$y2021
000904089 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904089 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000904089 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904089 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER RES TECHNOL : 2019$$d2021-01-27
000904089 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER RES TECHNOL : 2019$$d2021-01-27
000904089 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-27
000904089 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-27
000904089 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904089 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904089 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904089 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-27
000904089 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000904089 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904089 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904089 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904089 9801_ $$aFullTexts
000904089 980__ $$ajournal
000904089 980__ $$aVDB
000904089 980__ $$aUNRESTRICTED
000904089 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904089 981__ $$aI:(DE-Juel1)IFN-1-20101013