Home > Publications database > Effects of alloying, heat treatment and nanoreinforcement on mechanical properties and damping performances of Cu–Al-based alloys: A review > print |
001 | 904090 | ||
005 | 20240711113824.0 | ||
024 | 7 | _ | |a 10.1515/ntrev-2021-0101 |2 doi |
024 | 7 | _ | |a 2191-9089 |2 ISSN |
024 | 7 | _ | |a 2191-9097 |2 ISSN |
024 | 7 | _ | |a 2128/29825 |2 Handle |
024 | 7 | _ | |a WOS:000710757800001 |2 WOS |
037 | _ | _ | |a FZJ-2021-05660 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Yang, Liu |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Effects of alloying, heat treatment and nanoreinforcement on mechanical properties and damping performances of Cu–Al-based alloys: A review |
260 | _ | _ | |a Boston, Mass. |c 2021 |b De Gruyter |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1641301224_24212 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Cu–Al-based alloys are a kind of new functional material. Due to their unique thermoelastic martensite structure, they have excellent damping performance, which has become a research hotspot in the field of materials science and engineering in recent years. However, the elastic anisotropy and large grain size easily cause a brittle fracture, which is harmful to the mechanical properties of the material. In order to meet the practical needs of engineering, it is an important choice to design Cu–Al-based alloys with excellent mechanical properties and damping performances from the perspective of refining the grain size. When the grain size is small, the effect of fine grain strengthening and interfacial damping can play a role simultaneously to obtain Cu–Al-based alloys with excellent comprehensive properties. In this paper, several common preparation methods of Cu–Al-based alloy are introduced firstly. Then the contributions of researchers in refining grain size from alloying and heat treatment are summarized. Meanwhile, nanomaterials can be used as the reinforcing phase of Cu–Al based alloy, and play a superb role in mechanical properties and damping performances. The purpose of this study is to provide a reference for the further research of structure-function integrated materials with high strength and high damping simultaneously. Finally, the development of Cu–Al-based alloy from the aspects of 3D printing and numerical simulation is prospected. |
536 | _ | _ | |a 134 - Plasma-Wand-Wechselwirkung (POF4-134) |0 G:(DE-HGF)POF4-134 |c POF4-134 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Jiang, Xiaosong |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Sun, Hongliang |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Shao, Zhenyi |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Fang, Yongjian |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Shu, Rui |0 P:(DE-Juel1)186824 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1515/ntrev-2021-0101 |g Vol. 10, no. 1, p. 1560 - 1591 |0 PERI:(DE-600)2646548-6 |n 1 |p 1560 - 1591 |t Nanotechnology reviews |v 10 |y 2021 |x 2191-9089 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/904090/files/10.1515_ntrev-2021-0101.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:904090 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)186824 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Fusion |1 G:(DE-HGF)POF4-130 |0 G:(DE-HGF)POF4-134 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Plasma-Wand-Wechselwirkung |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-02-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-03 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-02-03 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOTECHNOL REV : 2019 |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-03 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-02-03 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-03 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|