000904099 001__ 904099
000904099 005__ 20240712084512.0
000904099 0247_ $$2doi$$a10.1039/D1MA00585E
000904099 0247_ $$2datacite_doi$$a10.34734/FZJ-2021-05669
000904099 0247_ $$2WOS$$aWOS:000717741700001
000904099 037__ $$aFZJ-2021-05669
000904099 082__ $$a540
000904099 1001_ $$0P:(DE-HGF)0$$aEliwi, Abed Alrhman$$b0
000904099 245__ $$aOptimization of SnO2 electron transport layer for efficient planar perovskite solar cells with very low hysteresis
000904099 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2022
000904099 3367_ $$2DRIVER$$aarticle
000904099 3367_ $$2DataCite$$aOutput Types/Journal article
000904099 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712761282_24403
000904099 3367_ $$2BibTeX$$aARTICLE
000904099 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904099 3367_ $$00$$2EndNote$$aJournal Article
000904099 520__ $$aNanostructured tin oxide (SnO2) is a very promising electron transport layer (ETL) for perovskite solar cells (PSCs) that allows low-temperature processing in the planar n–i–p architecture. However, minimizing current–voltage (J–V) hysteresis and optimizing charge extraction for PSCs in this architecture remains a challenge. In response to this, we study and optimize different types of single- and bilayer SnO2 ETLs. Detailed characterization of the optoelectronic properties reveals that a bilayer ETL composed of lithium (Li)-doped compact SnO2 (c(Li)-SnO2) at the bottom and potassium-capped SnO2 nanoparticle layers (NP-SnO2) at the top enhances the electron extraction and charge transport properties of PSCs and reduces the degree of ion migration. This results in an improved PCE and a strongly reduced J–V hysteresis for PSCs with a bilayer c(Li)-NP-SnO2 ETL as compared to reference PSCs with a single-layer or undoped bilayer ETL. The champion PSC with c(Li)-NP-SnO2 ETL shows a high stabilized PCE of up to 18.5% compared to 15.7%, 12.5% and 16.3% for PSCs with c-SnO2, c(Li)-SnO2 and c-NP-SnO2 as ETL, respectively.
000904099 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000904099 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904099 7001_ $$00000-0001-6250-6005$$aMalekshahi Byranvand, Mahdi$$b1
000904099 7001_ $$00000-0002-9604-3405$$aFassl, Paul$$b2
000904099 7001_ $$00000-0002-8710-1028$$aKhan, Motiur Rahman$$b3
000904099 7001_ $$0P:(DE-HGF)0$$aHossain, Ihteaz Muhaimeen$$b4
000904099 7001_ $$00000-0002-8768-9810$$aFrericks, Markus$$b5
000904099 7001_ $$0P:(DE-HGF)0$$aTernes, Simon$$b6
000904099 7001_ $$0P:(DE-HGF)0$$aAbzieher, Tobias$$b7
000904099 7001_ $$00000-0001-8795-4875$$aSchwenzer, Jonas A.$$b8
000904099 7001_ $$0P:(DE-HGF)0$$aMayer, Thomas$$b9
000904099 7001_ $$00000-0002-5765-1096$$aHofmann, Jan P.$$b10
000904099 7001_ $$00000-0001-5469-048X$$aRichards, Bryce S.$$b11
000904099 7001_ $$0P:(DE-HGF)0$$aLemmer, Uli$$b12
000904099 7001_ $$0P:(DE-Juel1)180101$$aSaliba, Michael$$b13
000904099 7001_ $$0P:(DE-Juel1)130282$$aPaetzold, Ulrich W.$$b14$$eCorresponding author
000904099 773__ $$0PERI:(DE-600)3031236-X$$a10.1039/D1MA00585E$$gp. 10.1039.D1MA00585E$$n1$$p456-466$$tMaterials advances$$v3$$x2633-5409$$y2022
000904099 8564_ $$uhttps://juser.fz-juelich.de/record/904099/files/d1ma00585e.pdf$$yOpenAccess
000904099 8564_ $$uhttps://juser.fz-juelich.de/record/904099/files/d1ma00585e.gif?subformat=icon$$xicon$$yOpenAccess
000904099 8564_ $$uhttps://juser.fz-juelich.de/record/904099/files/d1ma00585e.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000904099 8564_ $$uhttps://juser.fz-juelich.de/record/904099/files/d1ma00585e.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000904099 8564_ $$uhttps://juser.fz-juelich.de/record/904099/files/d1ma00585e.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000904099 909CO $$ooai:juser.fz-juelich.de:904099$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180101$$aForschungszentrum Jülich$$b13$$kFZJ
000904099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130282$$aForschungszentrum Jülich$$b14$$kFZJ
000904099 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000904099 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-02-05
000904099 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-02-05
000904099 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER ADV : 2022$$d2024-02-05
000904099 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-08-01T15:05:08Z
000904099 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-08-01T15:05:08Z
000904099 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000904099 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-02-05
000904099 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-02-05
000904099 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904099 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-08-01T15:05:08Z
000904099 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-02-05
000904099 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMATER ADV : 2022$$d2024-02-05
000904099 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-02-05
000904099 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-02-05
000904099 920__ $$lyes
000904099 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000904099 9801_ $$aFullTexts
000904099 980__ $$ajournal
000904099 980__ $$aVDB
000904099 980__ $$aUNRESTRICTED
000904099 980__ $$aI:(DE-Juel1)IEK-5-20101013
000904099 981__ $$aI:(DE-Juel1)IMD-3-20101013