TY - JOUR
AU - Eliwi, Abed Alrhman
AU - Malekshahi Byranvand, Mahdi
AU - Fassl, Paul
AU - Khan, Motiur Rahman
AU - Hossain, Ihteaz Muhaimeen
AU - Frericks, Markus
AU - Ternes, Simon
AU - Abzieher, Tobias
AU - Schwenzer, Jonas A.
AU - Mayer, Thomas
AU - Hofmann, Jan P.
AU - Richards, Bryce S.
AU - Lemmer, Uli
AU - Saliba, Michael
AU - Paetzold, Ulrich W.
TI - Optimization of SnO2 electron transport layer for efficient planar perovskite solar cells with very low hysteresis
JO - Materials advances
VL - 3
IS - 1
SN - 2633-5409
CY - Cambridge
PB - Royal Society of Chemistry
M1 - FZJ-2021-05669
SP - 456-466
PY - 2022
AB - Nanostructured tin oxide (SnO2) is a very promising electron transport layer (ETL) for perovskite solar cells (PSCs) that allows low-temperature processing in the planar n–i–p architecture. However, minimizing current–voltage (J–V) hysteresis and optimizing charge extraction for PSCs in this architecture remains a challenge. In response to this, we study and optimize different types of single- and bilayer SnO2 ETLs. Detailed characterization of the optoelectronic properties reveals that a bilayer ETL composed of lithium (Li)-doped compact SnO2 (c(Li)-SnO2) at the bottom and potassium-capped SnO2 nanoparticle layers (NP-SnO2) at the top enhances the electron extraction and charge transport properties of PSCs and reduces the degree of ion migration. This results in an improved PCE and a strongly reduced J–V hysteresis for PSCs with a bilayer c(Li)-NP-SnO2 ETL as compared to reference PSCs with a single-layer or undoped bilayer ETL. The champion PSC with c(Li)-NP-SnO2 ETL shows a high stabilized PCE of up to 18.5% compared to 15.7%, 12.5% and 16.3% for PSCs with c-SnO2, c(Li)-SnO2 and c-NP-SnO2 as ETL, respectively.
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000717741700001
DO - DOI:10.1039/D1MA00585E
UR - https://juser.fz-juelich.de/record/904099
ER -