TY  - JOUR
AU  - Eliwi, Abed Alrhman
AU  - Malekshahi Byranvand, Mahdi
AU  - Fassl, Paul
AU  - Khan, Motiur Rahman
AU  - Hossain, Ihteaz Muhaimeen
AU  - Frericks, Markus
AU  - Ternes, Simon
AU  - Abzieher, Tobias
AU  - Schwenzer, Jonas A.
AU  - Mayer, Thomas
AU  - Hofmann, Jan P.
AU  - Richards, Bryce S.
AU  - Lemmer, Uli
AU  - Saliba, Michael
AU  - Paetzold, Ulrich W.
TI  - Optimization of SnO2 electron transport layer for efficient planar perovskite solar cells with very low hysteresis
JO  - Materials advances
VL  - 3
IS  - 1
SN  - 2633-5409
CY  - Cambridge
PB  - Royal Society of Chemistry
M1  - FZJ-2021-05669
SP  - 456-466
PY  - 2022
AB  - Nanostructured tin oxide (SnO2) is a very promising electron transport layer (ETL) for perovskite solar cells (PSCs) that allows low-temperature processing in the planar n–i–p architecture. However, minimizing current–voltage (J–V) hysteresis and optimizing charge extraction for PSCs in this architecture remains a challenge. In response to this, we study and optimize different types of single- and bilayer SnO2 ETLs. Detailed characterization of the optoelectronic properties reveals that a bilayer ETL composed of lithium (Li)-doped compact SnO2 (c(Li)-SnO2) at the bottom and potassium-capped SnO2 nanoparticle layers (NP-SnO2) at the top enhances the electron extraction and charge transport properties of PSCs and reduces the degree of ion migration. This results in an improved PCE and a strongly reduced J–V hysteresis for PSCs with a bilayer c(Li)-NP-SnO2 ETL as compared to reference PSCs with a single-layer or undoped bilayer ETL. The champion PSC with c(Li)-NP-SnO2 ETL shows a high stabilized PCE of up to 18.5% compared to 15.7%, 12.5% and 16.3% for PSCs with c-SnO2, c(Li)-SnO2 and c-NP-SnO2 as ETL, respectively.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000717741700001
DO  - DOI:10.1039/D1MA00585E
UR  - https://juser.fz-juelich.de/record/904099
ER  -