001     904099
005     20240712084512.0
024 7 _ |a 10.1039/D1MA00585E
|2 doi
024 7 _ |a 10.34734/FZJ-2021-05669
|2 datacite_doi
024 7 _ |a WOS:000717741700001
|2 WOS
037 _ _ |a FZJ-2021-05669
082 _ _ |a 540
100 1 _ |a Eliwi, Abed Alrhman
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Optimization of SnO2 electron transport layer for efficient planar perovskite solar cells with very low hysteresis
260 _ _ |a Cambridge
|c 2022
|b Royal Society of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712761282_24403
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nanostructured tin oxide (SnO2) is a very promising electron transport layer (ETL) for perovskite solar cells (PSCs) that allows low-temperature processing in the planar n–i–p architecture. However, minimizing current–voltage (J–V) hysteresis and optimizing charge extraction for PSCs in this architecture remains a challenge. In response to this, we study and optimize different types of single- and bilayer SnO2 ETLs. Detailed characterization of the optoelectronic properties reveals that a bilayer ETL composed of lithium (Li)-doped compact SnO2 (c(Li)-SnO2) at the bottom and potassium-capped SnO2 nanoparticle layers (NP-SnO2) at the top enhances the electron extraction and charge transport properties of PSCs and reduces the degree of ion migration. This results in an improved PCE and a strongly reduced J–V hysteresis for PSCs with a bilayer c(Li)-NP-SnO2 ETL as compared to reference PSCs with a single-layer or undoped bilayer ETL. The champion PSC with c(Li)-NP-SnO2 ETL shows a high stabilized PCE of up to 18.5% compared to 15.7%, 12.5% and 16.3% for PSCs with c-SnO2, c(Li)-SnO2 and c-NP-SnO2 as ETL, respectively.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Malekshahi Byranvand, Mahdi
|0 0000-0001-6250-6005
|b 1
700 1 _ |a Fassl, Paul
|0 0000-0002-9604-3405
|b 2
700 1 _ |a Khan, Motiur Rahman
|0 0000-0002-8710-1028
|b 3
700 1 _ |a Hossain, Ihteaz Muhaimeen
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Frericks, Markus
|0 0000-0002-8768-9810
|b 5
700 1 _ |a Ternes, Simon
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Abzieher, Tobias
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schwenzer, Jonas A.
|0 0000-0001-8795-4875
|b 8
700 1 _ |a Mayer, Thomas
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Hofmann, Jan P.
|0 0000-0002-5765-1096
|b 10
700 1 _ |a Richards, Bryce S.
|0 0000-0001-5469-048X
|b 11
700 1 _ |a Lemmer, Uli
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Saliba, Michael
|0 P:(DE-Juel1)180101
|b 13
700 1 _ |a Paetzold, Ulrich W.
|0 P:(DE-Juel1)130282
|b 14
|e Corresponding author
773 _ _ |a 10.1039/D1MA00585E
|g p. 10.1039.D1MA00585E
|0 PERI:(DE-600)3031236-X
|n 1
|p 456-466
|t Materials advances
|v 3
|y 2022
|x 2633-5409
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/904099/files/d1ma00585e.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/904099/files/d1ma00585e.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/904099/files/d1ma00585e.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/904099/files/d1ma00585e.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/904099/files/d1ma00585e.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:904099
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)180101
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)130282
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-02-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-02-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATER ADV : 2022
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-08-01T15:05:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-08-01T15:05:08Z
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0
|0 LIC:(DE-HGF)CCBYNC3
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-02-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-08-01T15:05:08Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-02-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MATER ADV : 2022
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-02-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21