000904101 001__ 904101
000904101 005__ 20240712084513.0
000904101 0247_ $$2doi$$a10.1021/acs.chemmater.1c00276
000904101 0247_ $$2ISSN$$a0897-4756
000904101 0247_ $$2ISSN$$a1520-5002
000904101 0247_ $$2WOS$$aWOS:000661521800010
000904101 037__ $$aFZJ-2021-05671
000904101 082__ $$a540
000904101 1001_ $$0P:(DE-HGF)0$$aFerdowsi, Parnian$$b0
000904101 245__ $$aOne-Step Solvent-Free Mechanochemical Incorporation of Insoluble Cesium Salt into Perovskites for Wide Band-Gap Solar Cells
000904101 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2021
000904101 3367_ $$2DRIVER$$aarticle
000904101 3367_ $$2DataCite$$aOutput Types/Journal article
000904101 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712764912_24403
000904101 3367_ $$2BibTeX$$aARTICLE
000904101 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904101 3367_ $$00$$2EndNote$$aJournal Article
000904101 520__ $$aThe preparation of high-quality perovskite thin films with a low concentration of defects has recently been achieved through cation engineering using, for example, Cs halide salts. However, many Cs salts cannot be adopted readily due to their frequent insolubility in typical N,N-dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) solvent systems. Herein, we report the application of green, rapid, and solvent-free mechanosynthetic ball-milling for the incorporation of the otherwise insoluble CsBr to realize wide band-gap perovskite solar cells (PSCs). We mechanically synthesize triple-cation (cesium (Cs)/formamidinium (FA)/methylammonium (MA)) wide band-gap perovskites, resulting in subsequent powders that were soluble in mixed DMF/DMSO (4:1, V/V) solvents. Otherwise, the preparation of triple cations for wide band-gap perovskites through conventional solution processing could not be realized. The use of mechanosynthesis perovskites for thin-film formation allows for the growth of relatively large crystalline grains with grains diameter in the range of 500–700 nm. The champion device achieved a maximum PCE of 7.3% (7.03% stabilized), with JSC of 7.08 mA cm–2, VOC of 1.48 V, and a fill factor (FF) of 70%. This performance and voltage are among the highest reported for wide band-gap PSC devices incorporating triple-cation Csx(FAyMA(1–y))(1–x)PbBr3 perovskites. These results show that the use of a mechanosynthetic strategy to add insoluble dopants to wide band-gap perovskites provides a promising strategy for the formation of high-quality films. Furthermore, mechanoperovskite showed higher phase purity, VOC, and efficiency as compared to the conventional solution-processed devices.
000904101 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000904101 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904101 7001_ $$0P:(DE-HGF)0$$aOchoa-Martinez, Efrain$$b1
000904101 7001_ $$00000-0001-5936-339X$$aSteiner, Ullrich$$b2
000904101 7001_ $$0P:(DE-Juel1)180101$$aSaliba, Michael$$b3$$eCorresponding author
000904101 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.1c00276$$gVol. 33, no. 11, p. 3971 - 3979$$n11$$p3971 - 3979$$tChemistry of materials$$v33$$x0897-4756$$y2021
000904101 8564_ $$uhttps://juser.fz-juelich.de/record/904101/files/acs.chemmater.1c00276.pdf$$yRestricted
000904101 909CO $$ooai:juser.fz-juelich.de:904101$$pVDB
000904101 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180101$$aForschungszentrum Jülich$$b3$$kFZJ
000904101 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000904101 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000904101 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2019$$d2021-01-27
000904101 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904101 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000904101 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000904101 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000904101 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904101 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904101 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000904101 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000904101 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904101 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904101 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2019$$d2021-01-27
000904101 920__ $$lyes
000904101 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000904101 980__ $$ajournal
000904101 980__ $$aVDB
000904101 980__ $$aI:(DE-Juel1)IEK-5-20101013
000904101 980__ $$aUNRESTRICTED
000904101 981__ $$aI:(DE-Juel1)IMD-3-20101013