000904104 001__ 904104
000904104 005__ 20240712084525.0
000904104 0247_ $$2doi$$a10.1088/0256-307X/38/3/036301
000904104 0247_ $$2ISSN$$a0256-307X
000904104 0247_ $$2ISSN$$a1741-3540
000904104 0247_ $$2Handle$$a2128/33705
000904104 0247_ $$2WOS$$aWOS:000632840900001
000904104 037__ $$aFZJ-2021-05674
000904104 082__ $$a530
000904104 1001_ $$0P:(DE-Juel1)171643$$aLi, Feng$$b0
000904104 245__ $$aQuantum Transport across Amorphous-Crystalline Interfaces in Tunnel Oxide Passivated Contact Solar Cells: Direct versus Defect-Assisted Tunneling
000904104 260__ $$aBristol$$bIOP Publ.$$c2021
000904104 3367_ $$2DRIVER$$aarticle
000904104 3367_ $$2DataCite$$aOutput Types/Journal article
000904104 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674117661_13044
000904104 3367_ $$2BibTeX$$aARTICLE
000904104 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904104 3367_ $$00$$2EndNote$$aJournal Article
000904104 520__ $$aTunnel oxide passivated contact solar cells have evolved into one of the most promising silicon solar cell concepts of the past decade, achieving a record efficiency of 25%. We study the transport mechanisms of realistic tunnel oxide structures, as encountered in tunnel oxide passivating contact (TOPCon) solar cells. Tunneling transport is affected by various factors, including oxide layer thickness, hydrogen passivation, and oxygen vacancies. When the thickness of the tunnel oxide layer increases, a faster decline of conductivity is obtained computationally than that observed experimentally. Direct tunneling seems not to explain the transport characteristics of tunnel oxide contacts. Indeed, it can be shown that recombination of multiple oxygen defects in a-SiOx can generate atomic silicon nanowires in the tunnel layer. Accordingly, new and energetically favorable transmission channels are generated, which dramatically increase the total current, and could provide an explanation for our experimental results. Our work proves that hydrogenated silicon oxide (SiOx:H) facilitates high-quality passivation, and features good electrical conductivity, making it a promising hydrogenation material for TOPCon solar cells. By carefully selecting the experimental conditions for tuning the SiOx:H layer, we anticipate the simultaneous achievement of high open-circuit voltage and low contact resistance.
000904104 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000904104 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904104 7001_ $$0P:(DE-Juel1)169946$$aDuan, Weiyuan$$b1$$ufzj
000904104 7001_ $$0P:(DE-Juel1)162141$$aPomaska, Manuel$$b2$$ufzj
000904104 7001_ $$0P:(DE-Juel1)165230$$aKöhler, Malte$$b3
000904104 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b4$$ufzj
000904104 7001_ $$0P:(DE-HGF)0$$aPu, Yong$$b5
000904104 7001_ $$0P:(DE-Juel1)130210$$aAeberhard, Urs$$b6
000904104 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b7$$eCorresponding author$$ufzj
000904104 773__ $$0PERI:(DE-600)2040565-0$$a10.1088/0256-307X/38/3/036301$$gVol. 38, no. 3, p. 036301 -$$n3$$p036301 -$$tChinese physics letters$$v38$$x0256-307X$$y2021
000904104 8564_ $$uhttps://juser.fz-juelich.de/record/904104/files/Quantum%20transport%20across.pdf$$yOpenAccess
000904104 909CO $$ooai:juser.fz-juelich.de:904104$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169946$$aForschungszentrum Jülich$$b1$$kFZJ
000904104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162141$$aForschungszentrum Jülich$$b2$$kFZJ
000904104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b4$$kFZJ
000904104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b7$$kFZJ
000904104 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000904104 9141_ $$y2022
000904104 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000904104 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000904104 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHINESE PHYS LETT : 2019$$d2021-01-29
000904104 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000904104 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000904104 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000904104 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904104 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000904104 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000904104 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-29$$wger
000904104 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000904104 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000904104 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000904104 920__ $$lyes
000904104 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000904104 9801_ $$aFullTexts
000904104 980__ $$ajournal
000904104 980__ $$aVDB
000904104 980__ $$aUNRESTRICTED
000904104 980__ $$aI:(DE-Juel1)IEK-5-20101013
000904104 981__ $$aI:(DE-Juel1)IMD-3-20101013