001     904104
005     20240712084525.0
024 7 _ |a 10.1088/0256-307X/38/3/036301
|2 doi
024 7 _ |a 0256-307X
|2 ISSN
024 7 _ |a 1741-3540
|2 ISSN
024 7 _ |a 2128/33705
|2 Handle
024 7 _ |a WOS:000632840900001
|2 WOS
037 _ _ |a FZJ-2021-05674
082 _ _ |a 530
100 1 _ |a Li, Feng
|0 P:(DE-Juel1)171643
|b 0
245 _ _ |a Quantum Transport across Amorphous-Crystalline Interfaces in Tunnel Oxide Passivated Contact Solar Cells: Direct versus Defect-Assisted Tunneling
260 _ _ |a Bristol
|c 2021
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674117661_13044
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tunnel oxide passivated contact solar cells have evolved into one of the most promising silicon solar cell concepts of the past decade, achieving a record efficiency of 25%. We study the transport mechanisms of realistic tunnel oxide structures, as encountered in tunnel oxide passivating contact (TOPCon) solar cells. Tunneling transport is affected by various factors, including oxide layer thickness, hydrogen passivation, and oxygen vacancies. When the thickness of the tunnel oxide layer increases, a faster decline of conductivity is obtained computationally than that observed experimentally. Direct tunneling seems not to explain the transport characteristics of tunnel oxide contacts. Indeed, it can be shown that recombination of multiple oxygen defects in a-SiOx can generate atomic silicon nanowires in the tunnel layer. Accordingly, new and energetically favorable transmission channels are generated, which dramatically increase the total current, and could provide an explanation for our experimental results. Our work proves that hydrogenated silicon oxide (SiOx:H) facilitates high-quality passivation, and features good electrical conductivity, making it a promising hydrogenation material for TOPCon solar cells. By carefully selecting the experimental conditions for tuning the SiOx:H layer, we anticipate the simultaneous achievement of high open-circuit voltage and low contact resistance.
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Duan, Weiyuan
|0 P:(DE-Juel1)169946
|b 1
|u fzj
700 1 _ |a Pomaska, Manuel
|0 P:(DE-Juel1)162141
|b 2
|u fzj
700 1 _ |a Köhler, Malte
|0 P:(DE-Juel1)165230
|b 3
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 4
|u fzj
700 1 _ |a Pu, Yong
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Aeberhard, Urs
|0 P:(DE-Juel1)130210
|b 6
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 7
|e Corresponding author
|u fzj
773 _ _ |a 10.1088/0256-307X/38/3/036301
|g Vol. 38, no. 3, p. 036301 -
|0 PERI:(DE-600)2040565-0
|n 3
|p 036301 -
|t Chinese physics letters
|v 38
|y 2021
|x 0256-307X
856 4 _ |u https://juser.fz-juelich.de/record/904104/files/Quantum%20transport%20across.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904104
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169946
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130233
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)143905
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHINESE PHYS LETT : 2019
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21