001     904105
005     20240712084513.0
024 7 _ |a 10.1002/aenm.202101539
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/30270
|2 Handle
024 7 _ |a altmetric:108568270
|2 altmetric
024 7 _ |a WOS:000669023800001
|2 WOS
037 _ _ |a FZJ-2021-05675
082 _ _ |a 050
100 1 _ |a Li, Guixiang
|0 0000-0002-8730-0713
|b 0
245 _ _ |a Ionic Liquid Stabilizing High‐Efficiency Tin Halide Perovskite Solar Cells
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642413858_26836
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tin halide perovskites attract incremental attention to deliver lead-free perovskite solar cells. Nevertheless, disordered crystal growth and low defect formation energy, related to Sn(II) oxidation to Sn(IV), limit the efficiency and stability of solar cells. Engineering the processing from perovskite precursor solution preparation to film crystallization is crucial to tackle these issues and enable the full photovoltaic potential of tin halide perovskites. Herein, the ionic liquid n-butylammonium acetate (BAAc) is used to tune the tin coordination with specific O…Sn chelating bonds and NH…X hydrogen bonds. The coordination between BAAc and tin enables modulation of the crystallization of the perovskite in a thin film. The resulting BAAc-containing perovskite films are more compact and have a preferential crystal orientation. Moreover, a lower amount of Sn(IV) and related chemical defects are found for the BAAc-containing perovskites. Tin halide perovskite solar cells processed with BAAc show a power conversion efficiency of over 10%. This value is retained after storing the devices for over 1000 h in nitrogen. This work paves the way toward a more controlled tin-based perovskite crystallization for stable and efficient lead-free perovskite photovoltaics.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Su, Zhenhuang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Li, Meng
|0 0000-0003-0360-7791
|b 2
|e Corresponding author
700 1 _ |a Yang, Feng
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Aldamasy, Mahmoud H.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pascual, Jorge
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Yang, Fengjiu
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Liu, Hairui
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zuo, Weiwei
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Di Girolamo, Diego
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Iqbal, Zafar
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Nasti, Giuseppe
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Dallmann, André
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Gao, Xingyu
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Wang, Zhaokui
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Saliba, Michael
|0 P:(DE-Juel1)180101
|b 15
700 1 _ |a Abate, Antonio
|0 0000-0002-3012-3541
|b 16
|e Corresponding author
773 _ _ |a 10.1002/aenm.202101539
|g Vol. 11, no. 32, p. 2101539 -
|0 PERI:(DE-600)2594556-7
|n 32
|p 2101539 -
|t Advanced energy materials
|v 11
|y 2021
|x 1614-6832
856 4 _ |u https://juser.fz-juelich.de/record/904105/files/Advanced%20Energy%20Materials%20-%202021%20-%20Li%20-%20Ionic%20Liquid%20Stabilizing%20High%25u2010Efficiency%20Tin%20Halide%20Perovskite%20Solar%20Cells.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904105
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)180101
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21