001     904110
005     20240712084513.0
024 7 _ |a 10.1002/solr.202100516
|2 doi
024 7 _ |a 2128/32700
|2 Handle
024 7 _ |a WOS:000718210400001
|2 WOS
037 _ _ |a FZJ-2021-05680
082 _ _ |a 600
100 1 _ |a Peibst, Robby
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Demonstration of Feeding Vehicle‐Integrated Photovoltaic‐Converted Energy into the High‐Voltage On‐Board Network of Practical Light Commercial Vehicles for Range Extension
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669107153_16660
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The setting up of a practical electrically driven light commercial demonstration vehicle with integrated photovoltaics (PV) is reported. The demonstrator vehicle is equipped with 15 modules based on the crystalline Si/amorphous Si heterojunction technology. The nominal total peak power under standard testing conditions is 2180 Wp. Specifically, the PV-converted energy is fed into the high-voltage (HV; 400 V) board-net for a utilization of the large capacity of the HV battery and thus for direct range extension. The demonstrator vehicle is equipped with irradiation, wind, temperature, magnetic, and global positioning system sensors. Irradiation and temperature as well as the energy flows from modules, maximum power point trackers (MPPTs), low-voltage buffer battery to HV battery via DC/DC, and from the HV battery to the loads during an exemplarily test drive day (May 31, 2021) are monitored. The range extension obtained at this day on our test route (51° 59′ N, 9° 31′ E) was 36 km, the corresponding CO2 savings account for ≈2.3 kg. The chain efficiency of the electronic components from the input side of the MPPTs to the HV output side of the DC/DC was 68.6%, whereas the DC/DC itself has an average efficiency of 90%.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
536 _ _ |a Verbundvorhaben: Street - Einsatz von hocheffizienten Solarzellen in elektrisch betriebenen Nutzfahrzeugen; Teilvorhaben: Herstellung und Entwicklung von (0324275E)
|0 G:(BMWi)0324275E
|c 0324275E
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fischer, Hilke
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Brunner, Manuel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schießl, Andreas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wöhe, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wecker, Reinhard
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Haase, Felix
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schulte-Huxel, Henning
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Blankemeyer, Susanne
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Köntges, Marc
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Hollemann, Christina
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Brendel, Rolf
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Wetzel, Gustav
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Krügener, Jan
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Nonnenmacher, Hermann
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Mehlich, Heiko
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Salavei, Andrei
|0 P:(DE-Juel1)185042
|b 16
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 17
|u fzj
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 18
|u fzj
700 1 _ |a Pieters, Bart
|0 P:(DE-Juel1)130284
|b 19
|u fzj
700 1 _ |a Janke, Stefan
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Stannowski, Bernd
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Korte, Lars
|0 P:(DE-HGF)0
|b 22
773 _ _ |a 10.1002/solr.202100516
|g p. 2100516 -
|0 PERI:(DE-600)2882014-9
|n 5
|p 2100516
|t Solar RRL
|v 6
|y 2022
|x 2367-198X
856 4 _ |u https://juser.fz-juelich.de/record/904110/files/Solar%20RRL%20-%202021%20-%20Peibst%20-%20Demonstration%20of%20Feeding%20Vehicle%E2%80%90Integrated%20Photovoltaic%E2%80%90Converted%20Energy%20into%20the%20High%E2%80%90Voltage.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904110
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)130233
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)130284
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL RRL : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL RRL : 2021
|d 2022-11-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21