000904114 001__ 904114
000904114 005__ 20240712084513.0
000904114 0247_ $$2doi$$a10.1039/D1EE02018H
000904114 0247_ $$2ISSN$$a1754-5692
000904114 0247_ $$2ISSN$$a1754-5706
000904114 0247_ $$2WOS$$aWOS:000700218500001
000904114 037__ $$aFZJ-2021-05684
000904114 082__ $$a690
000904114 1001_ $$00000-0001-9427-0113$$aSaki, Zahra$$b0
000904114 245__ $$aSolution-processed perovskite thin-films: the journey from lab- to large-scale solar cells
000904114 260__ $$aCambridge$$bRSC Publ.$$c2021
000904114 3367_ $$2DRIVER$$aarticle
000904114 3367_ $$2DataCite$$aOutput Types/Journal article
000904114 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712762044_24401
000904114 3367_ $$2BibTeX$$aARTICLE
000904114 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904114 3367_ $$00$$2EndNote$$aJournal Article
000904114 520__ $$aIn the last decade, the power conversion efficiency (PCE) of solution-processed perovskite solar cells (PSCs) in the lab-scale has reached an incredible level of 25.5%. Generally, PSCs are composed of a stack consisting of a perovskite thin-film sandwiched between an electron transporting layer (ETL) and a hole transporting layer (HTL). Although the quality of the ETL and HTL interfaces with the perovskite thin-film is important, the quality of the perovskite thin-film is also critical to achieving high-performance PSCs. Low-temperature deposition of organic–inorganic perovskite thin-films by simple solution processes is one of the significant advantages of PSCs compared to other well-developed semiconductors for manufacturing solar cells. However, growing highly uniform and crystalline solution-processed perovskite thin-films is very challenging due to multiple phenomena during film formation, including solvent evaporation, wetting effects, inhomogeneous film stress and uncontrolled nucleation and growth. Therefore, understanding the different stages of perovskite crystallization is critical for achieving high-quality films and realizing higher PCEs. On the other hand, switching to large-scale solar modules leads to a substantial loss in performance, decreasing the chance of commercialization of this technology. Therefore, developing large-scale deposition techniques for reliable perovskite crystallization is very vital for scaling up PSCs. So far, several solution-processed methods such as anti-solvent and two-step processes have been developed for lab-scale perovskite thin-films deposition. However, these methods are not applicable for large-scale perovskite deposition. This review explores various scalable solution-processed perovskite deposition techniques. Moreover, different solvent quenching techniques as the most critical step of large-scale perovskite crystallization are discussed to provide a comprehensive view for achieving high-quality perovskite thin-films with large areas. Finally, the existing challenges and opportunities to push forward the commercialization of PSCs are discussed.
000904114 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000904114 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904114 7001_ $$00000-0001-6250-6005$$aByranvand, Mahdi Malekshahi$$b1
000904114 7001_ $$0P:(DE-HGF)0$$aTaghavinia, Nima$$b2
000904114 7001_ $$0P:(DE-Juel1)184614$$aKedia, Mayank$$b3$$ufzj
000904114 7001_ $$0P:(DE-Juel1)180101$$aSaliba, Michael$$b4$$eCorresponding author
000904114 773__ $$0PERI:(DE-600)2439879-2$$a10.1039/D1EE02018H$$gVol. 14, no. 11, p. 5690 - 5722$$n11$$p5690 - 5722$$tEnergy & environmental science$$v14$$x1754-5692$$y2021
000904114 8564_ $$uhttps://juser.fz-juelich.de/record/904114/files/d1ee02018h.pdf$$yRestricted
000904114 909CO $$ooai:juser.fz-juelich.de:904114$$pVDB
000904114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184614$$aForschungszentrum Jülich$$b3$$kFZJ
000904114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180101$$aForschungszentrum Jülich$$b4$$kFZJ
000904114 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000904114 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-30$$wger
000904114 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-30$$wger
000904114 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000904114 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000904114 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000904114 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904114 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000904114 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000904114 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-30
000904114 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904114 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000904114 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG ENVIRON SCI : 2019$$d2021-01-30
000904114 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bENERG ENVIRON SCI : 2019$$d2021-01-30
000904114 920__ $$lyes
000904114 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000904114 980__ $$ajournal
000904114 980__ $$aVDB
000904114 980__ $$aI:(DE-Juel1)IEK-5-20101013
000904114 980__ $$aUNRESTRICTED
000904114 981__ $$aI:(DE-Juel1)IMD-3-20101013