001     904117
005     20240712084513.0
024 7 _ |a 10.1109/JPHOTOV.2020.3041240
|2 doi
024 7 _ |a 2156-3381
|2 ISSN
024 7 _ |a 2156-3403
|2 ISSN
024 7 _ |a 2128/30280
|2 Handle
024 7 _ |a WOS:000621413300027
|2 WOS
037 _ _ |a FZJ-2021-05687
082 _ _ |a 530
100 1 _ |a Sovetkin, Evgenii
|0 P:(DE-Juel1)177942
|b 0
245 _ _ |a Encoder–Decoder Semantic Segmentation Models for Electroluminescence Images of Thin-Film Photovoltaic Modules
260 _ _ |a New York, NY
|c 2021
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642420812_31326
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We consider a series of image segmentation methods based on the deep neural networks in order to perform semantic segmentation of electroluminescence (EL) images of thin-film modules. We utilize the encoder-decoder deep neural network architecture. The framework is general such that it can easily be extended to other types of images (e.g., thermography) or solar cell technologies (e.g., crystalline silicon modules). The networks are trained and tested on a sample of images from a database with 6000 EL images of copper indium gallium diselenide thin film modules. We selected two types of features to extract, shunts and so called “droplets.” The latter feature is often observed in the set of images. Several models are tested using various combinations of encoder-decoder layers, and a procedure is proposed to select the best model. We show exemplary results with the best selected model. Furthermore, we applied the best model to the full set of 6000 images and demonstrate that the automated segmentation of EL images can reveal many subtle features, which cannot be inferred from studying a small sample of images. We believe these features can contribute to process optimization and quality control.
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Achterberg, Elbert Jan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Weber, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pieters, Bart E.
|0 P:(DE-Juel1)130284
|b 3
|e Corresponding author
773 _ _ |a 10.1109/JPHOTOV.2020.3041240
|g Vol. 11, no. 2, p. 444 - 452
|0 PERI:(DE-600)2585714-9
|n 2
|p 444 - 452
|t IEEE journal of photovoltaics
|v 11
|y 2021
|x 2156-3381
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/904117/files/2010.07556.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/904117/files/EncoderDecoder_Semantic_Segmentation_Models_for_Electroluminescence_Images_of_Thin-Film_Photovoltaic_Modules.pdf
909 C O |o oai:juser.fz-juelich.de:904117
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177942
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130284
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE J PHOTOVOLT : 2019
|d 2021-01-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21