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Encoder-decoder semantic segmentation models for
electroluminescence images of thin-film

photovoltaic modules
Evgenii Sovetkin, Elbert Jan Achterberg, Thomas Weber, and Bart E. Pieters

Abstract—We consider a series of image segmentation methods
based on the deep neural networks in order to perform semantic
segmentation of electroluminescence (EL) images of thin-film
modules. We utilize the encoder-decoder deep neural network
architecture. The framework is general such that it can easily be
extended to other types of images (e.g. thermography) or solar
cell technologies (e.g. crystalline silicon modules). The networks
are trained and tested on a sample of images from a database
with 6000 EL images of Copper Indium Gallium Diselenide
(CIGS) thin film modules. We selected two types of features to
extract, shunts and so called “droplets”. The latter feature is often
observed in the set of images. Several models are tested using
various combinations of encoder-decoder layers, and a procedure
is proposed to select the best model. We show exemplary results
with the best selected model. Furthermore, we applied the best
model to the full set of 6000 images and demonstrate that the
automated segmentation of EL images can reveal many subtle
features which cannot be inferred from studying a small sample
of images. We believe these features can contribute to process
optimization and quality control.

Keywords: encoder-decoder neural networks, thin-film,
electroluminescence imaging

I. INTRODUCTION

Recently there has been an increasing interest in automated
image analysis of spatially resolved characterization methods
for Photo Voltaic (PV) modules such as electroluminescence
(EL) [1, 2, 3, 4, 5, 6]. Such automated image analysis aims
at quality control of modules and is thus of great interest for
manufacturers, PV system owners, and insurance companies,
as it allows for a systematic inspection of a large number of
modules, both prior and after installation.

Several commonly used PV imaging methods exists which
reveal detailed information on the state of a PV module. Ex-
amples include ultraviolet fluorescence luminescence (UVFL)
to inspect the encapsulation of a module, Electro- and Photo-
luminescence, which provides detailed information on the
local electrical properties of the solar cells, and thermography,
with which the operation temperature distribution within a
module may be estimated.

These imaging methods may all be applied prior to installing
the modules and after installation to inspect a system dur-
ing operation. Thus, manufacturers may use these methods
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in production quality control. System owners and insurance
companies may also use PV imaging methods to determine
the cause of module performance issues or to support warranty
claims and determine liabilities.

An automated image analysis allows the systematic analysis
of a large number of module images. Thus, it can greatly
contribute to classify degradation modes of modules and to
the identification of early warning signs or degradation.

In this work we demonstrate the application of novel
semantic image segmentation methods based on deep neural
networks. The aim of an image segmentation is to assign a
label to every pixel in an image. In our case we would like to
identify pixels in EL images that correspond to some defect
in a module.

We apply our segmentation models to a database of 6000
EL images of thin-film modules. Several common defect types
are identified and different models are trained to detect these
defect. Furthermore, we propose an approach to select the
best models from the set of the obtained trained segmentation
networks.

The main challenge that we have to overcome in this
work comes from the type of our PV modules. Whereas for
crystalline silicon there exists a well established catalogue of
defects visible in EL images [7], such a catalogue does not
exist for thin-film modules. Therefore, our methods must be
flexible enough to be easily adapted for different defects. This
motivates the choice of the deep neural network methodology
that we use.

We demonstrate that our approach reliably detects various
defect types. Furthermore, a combined statistical evaluation of
the EL image database reveals hidden features in EL images
that are not observed in individual images of the modules. Our
methods can be easily adapted for other types of defects, as
well as other types of technology.

The paper is organized as follows. Section II reviews
literature on the subject of automatic image analysis. The
available data used in this study and its preprocessing is
discussed in Section III. Section IV elaborates on our data
and methodology. Section V discusses the results. Lastly, this
work is concluded in Section VI.

II. RELATED WORKS

To review the relevant literature in a structured way we
split this section into two subsections. Firstly, we review the
research on the automatic visual inspection in photovoltaics.
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Secondly, we discuss works in other application fields, where
approaches similar to this paper have been used. This allows us
to overview methods used so far in photovoltaics community
as well as to capture research trends in other image analysis
fields.

One of such trends is the gradual replacement of feature-
based methods by machine learning techniques. By a feature-
based method, we understand here an approach that applies
some transformation to an image that is tailored for extraction
of some particular information. On the other hand, the machine
learning methods usually solve some generic tasks such as
regression or classification, which are then adapted to a
particular application. This work also adapts a set of generic
image segmentation methods based on deep neural networks.

A. Image analysis in PV
In photovoltaics automated image analysis methods aim to

solve different tasks. Although very different aims are pursued,
there are some common methods applied. For this reason
we briefly review related works on image analysis which
can be roughly categorized as follows; detecting and locating
defects and other structures of interest, forecasting module
performance, and image collection itself.

Most work on locating and identifying structures of interest
revolves around cracks in crystalline silicon solar modules.
Tsai, Chang, and Chao [8], Anwar and Abdullah [9, 10] used
a pipeline consisting of an anisotropic diffusion and certain
shape analysis algorithms to localise cracks in EL images.

Tsai, Wu, and Li [11] consider image representation in the
Fourier domain to identify position of cracks, breaks and finger
interruptions. There the Fourier transformed image is filtered
by setting high-frequency coefficients associated with lines
artifacts to zero. Then the defects are identified by comparing
the original image and the high-pass filtered image. Due to
the assumptions on the shape of the defect, the method has
difficulties detecting defects of more complex shapes.

Tsai, Wu, and Chiu [12] introduce a supervised learn-
ing method for defect identification that uses Independent
Component Analysis (ICA). Manually selected defect-free
solar cell subimages are used to find a set of independent
basis images with an independent component analysis (ICA),
that are consequently used in a cosine distance to determine
presence of a defect in a test sample image.

Some works focus on an automatic visual inspection of very
specific parts of a PV module. Sun, Tseng, and Chen [13]
proposed a machine vision algorithm to examine electrical
contacts. Whereas Tseng, Liu, and Chou [14] describe a
method for an automatic detection of finger interruptions via
binary clustering.

Infrared imaging is mostly used to detect hot-spots. As
IR imaging provides fairly direct information on the local
surface temperature of a module, relatively simple image
processing algorithms can be used. Chaudhary and Chaturvedi
[15] uses watershed transform algorithm to identify the hot-
spots. Ngo and Macabebe [16], and Alsafasfeh, Abdel-Qader,
and Bazuin [17] use clustering algorithms to segment IR image
and identify hotspots. Hepp et al. developed a thresholding
method for hot spot detection [18].

There are several research directions that have been estab-
lished in order to build models that forecast electrical charac-
teristics from images. Potthoff et al. [19] uses a physical model
to calculate the operating voltage of individual crystalline solar
cells by EL imaging.

More recent works do not rely on a particular physical
model and train a machine learning method to extract the
required information from the data. Mehta et al. [20] proposed
a system for forecasting power loss, localisation and type of
soiling from RGB images of solar modules. Their approach
uses deep neural network architectures similar to ones we use
in this paper.

Deitsch et al. [3] train an SVM classifier based on the
extracted feature descriptors (SURF, KAZE, FAST), and a
VGG-net based neural network in order to identify defective
cells that have an impact on power reduction of the whole
module.

Demant et al. [1] proposes a Convolution Neural Network
(CNN) architecture to forecast IV characteristics from a PL
image as a production process control procedure.

When it comes to an application of these automatic methods
to the real data, several practical problems arise. It is often
the case that images taken in field conditions suffer from
various distortions due to the position of a module in front of
a camera, lens distortions, blurring due to wind and shocks.
Such distortions introduce complications in automatic image
processing. Therefore, a certain amount of work has been done
in the direction of EL image preprocessing analysis methods
[2, 5, 6].

The preprocessing steps are important for IR images as well.
Salamanca, Merchán, and Garcı́a [21] use the grey-level co-
occurrence matrix to identify the location of the solar panels
in IR images of the operating photovoltaic plants.

B. Image analysis in other fields

Convolution neural networks are becoming a standard tool
in automated image analysis. We provide here several refer-
ences that use similar methods as used in this work.

Masci et al. [22] developed a CNN architecture to detect
cracks in steel. The proposed architecture is compared with a
method that use hand-crafted feature description.

A neural network architecture has been proposed to identify
cracks on the road, [23]. It has been demonstrated that the
method outperforms methods based on SVM and Boosting.

Waldner and Diakogiannis [24] use encoder-decoder neural
networks to extract agriculture field boundaries from satellite
images. Iglovikov and Shvets [25] use U-net with VGG11
encoder network to segment satellite images in the Inria Aerial
Image Labelling Dataset [26].

Image segmentation is an important topic in medical image
analysis as well. Havaei et al. [27] performs semantic segmen-
tation of the brain tumours using MRI imaging. They explore
the possibility to combine a simple CNN in a cascaded fashion.
Esteva et al. [28] use deep neural network to classify different
types of skin cancer. Attia et al. [29] use combination of CNN
and Recurrent Neural Networks (RNN) to identify a surgical
tool location in medical imaging. Kayalibay, Jensen, and
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Figure 1. Thin-film module EL image. A module consists of 150 cells
(positioned horizontally) connected in series. The cells are separated by
interconnection lines (horizontal dark lines). The module consist of several
submodules separated by vertical isolation lines, which appear dark in the
EL image. The EL image is stitched (there are 1 horizontal and 3 vertical
stitch lines); overall intensities of different patches of images are different.
These intensity differences are attributed to metastable changes during the
measurement.

Smagt [30] adapt the U-net encoder-decoder style architecture
for the 3-dimensional input signal of the MRI images.

III. DATA

The data was acquired within the framework of the PEARL-
TF project. The website [31] contains detailed information
about the project and the involved partners. In this project,
the data from several solar parks with thin-film modules
was collected. In addition to EL images, also performance
characteristics of the modules were measured.

The EL images are taken at predefined conditions (selected
fixed applied current and/or fixed applied voltage). A silicon
CCD sensor camera is used to measure subsequently several
parts of the module, with the images being stitched afterwards.
The applied voltage and the applied current together with the
temperature of the module are being recorded. The I/V char-
acteristics are also measured and the solar cell performance
parameters determined.

The database contains 6000 EL images of the co-evaporated
Copper Indium Gallium Diselenide (CIGS) modules from the
same manufacturer. Every image is supplied with a measured
performance data. A typical EL image of a thin-film CIGS
module from our database is depicted in Figure 1. The module
consists of 150 connected cells in series (in Figure 1 the cells
are recognized as horizontal stripes). The cells are separated
by interconnection lines (horizontal dark lines in Figure 1). In
addition, the module is separated in 5 parallel sub-modules by
vertical isolation lines (dark vertical lines).

As mentioned before, every EL image consists of several
stitched images. Different stitched parts of the image have dif-
ferent overall intensities (see Figure 1). This is attributed to the
metastable behaviour of CIGS solar cells, where the electrical
properties of the cell can change during the measurement.

In order to obtain a labelled dataset we segment images
manually. This work is done using two different image editor

Figure 2. Example of droplets (left) and a shunted area (right). Here the cells
are shown vertically.

programs. Firstly, we use the GNU1 Image Manipulation
Program (GIMP) [32] to create binary masks of various defects
locations, where the defect pixels are manually marked using
a drawing pad and a digital stylus. Alternatively, we use the
ThinFia [33] program that is designed to identify defects in
EL images by introducing a grid-mesh. The ThinFia program
was developed within the PEARL-TF project. A general
image processing program such as GIMP requires more time
to segment an image, comparing to the ThinFia, however,
smaller defects are segmented more accurately in GIMP. The
annotations for droplets and shunts are each performed by a
single person, and thus the inter-annotator agreement has not
been considered.

In the image database we focus on the segmentation of
“shunts”. Shunts are characterized by a more conductive con-
nection between the front and back electrodes than the normal
solar cell structure (i.e. the solar cell structure is damaged or
missing). There are many causes for shunts. Commonly shunts
originate from debris of the copper evaporation source or
pinholes in the CIGS absorber [34, 35]. Figure 2 (right) depicts
a shunt defect. Shunts generally appear as dark areas with a
gradient in intensity away from the actual defect location. The
dark area is confined to the area of one cell. Severe shunts may
also completely darken a cell stripe, in which case often the
neighboring cells exhibit bright areas in the vicinity of the
shunt [36]. Shunts are generally relevant to the solar module
performance, in particular under low light conditions [37].

In addition to shunts we noticed the CIGS modules often
exhibit “droplets” in the EL images. Figure 2 (left) shows a
detail of droplets. The appearance of droplets resembles water
stains and thus we speculate these structures originate from the
chemical bath deposition. At this point it is unknown what the
impact of droplets is on the module performance, however, the
bright appearance imply a local change in quantum efficiency
according to the reciprocity relations between luminescence
and quantum efficiency [38].

In total, we have about 6000 unlabelled, 142 labelled mod-
ule images with shunts, and 14 labelled module images with
droplets. The manual segmentation of droplets in an image is
particular laborious, hence only few images are available.

All labelled images are split randomly onto a training and
a testing datasets. The training dataset consists 106 labelled
shunts and 8 labelled droplets images. The testing dataset
contains 24 labelled shunt and 3 droplets images. In addition
we evaluate the final model using the remaining 12 images
with shunts and 3 images with droplets.

1GNU is a recursive acronym for GNU’s Not Unix!
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The labelled dataset is available online, [39].

IV. METHODS

In this section we review methods that we use to build seg-
mentation models. The encoder-decoder deep neural network
architectures, [40], are commonly used in the semantic image
segmentation problems, [30, 29, 25, 24]. We build multiple
models by combining different encoder and decoder parts in
the neural network architecture.

In order to populate our training data set we apply various
transformations (data augmentation) to the original EL images.

After several models are trained, we compute segmentation
on the test images and compute several performance metrics.
It is important to establish a baseline for the evaluated metrics,
as manual labelling has a significant human bias and differs
for different types of defects.

The final model is obtained by means of using the multi-
objective optimization technique.

It should be noted here, that the encoder-decoder models
used here solve a general image segmentation problem, and
hence can be applied to arbitrary images, as long as there
exist a training dataset of sufficient size. For instance, these
methods can be applied to different defects, different types
of images (e.g. IR, PL, UVFL) or PV technologies (e.g.
crystalline modules).

Our current approach is only restricted by the size of the
input image patch and information contained in it. Therefore,
defects that are larger than the input image patch can be
problematic to identify.

A. Model architectures

For our segmentation models we utilize the encoder-decoder
neural network architecture. These networks consist of two
parts: the contraction part (or encoder) and the symmetric
expansion part (or decoder). The encoder compresses infor-
mation content of an arbitrarily high-dimensional image into
a feature vector. The decoder gradually upscales the encoded
features back to the original resolution.

Figure 3 schematically demonstrates a typical structure of
the encoder-decoder architecture. Each block represents an
output of the convolutional layer, with the data flow going
from left to right. The arrows represent the skipping links,
where the input for the layer is copied from the encoder
to the decoder parts. Different networks may have different
number of layers, skipping connections and different activation
functions.

We take several popular networks and use parts of their
architecture as an encoder or as a decoder. Combinations of
encoders and decoders from different networks provide us
with different segmentation networks. Furthermore, there are
several tuning parameters available that allow us to generate
even more segmentation models.

For the encoder part of our networks we use Mobile-
net [41], ResNet [42], VGG-net [43] and U-net [44]. For
the decoder part of our network we use U-net [44], FCN-
net [45], PSP-net [46] and SegNet [47]. We use network
implementations available in [48].

Table I
VARIOUS COMBINATION OF ENCODER AND DECODER NETWORKS

Encoder Decoder
Mobile-net

PSP-netResNet
VGG-net

Mobile-net

SegNetResNet
U-net

VGG-net

Encoder Decoder
Mobile-net

U-netResNet
VGG-net

U-net
Mobile-net

FCN-netResNet
VGG-net

U-net

In order to be able to combine different encoder and decoder
architectures we organize all encoder outputs to have 5 feature
tensors. Different models have slightly different permissible
input image sizes. The ResNet models require the input image
dimension to be divisible by 32, the PSP-net models: divisible
by 192. The Mobile-net models have the fixed input image
size of 224× 224 pixels.

Table I summarizes the combinations of the encoder and
decoder models. Some encoders and decoders have a tuning
parameter. The ResNet, VGG-net, U-net have the size of the
input image as an input parameter. We select between either
256×256 and 512×512. The SegNet’s parameter is the number
of upsampling routines, see [47]. The FCN-net’s parameter has
a single parameter: number of features, that can be equal 8 or
32. Combinations of different encoders and decoders with the
choice of several tunable parameters provide us with a choice
of 34 trainable models, i.e. we treat a single model with tuning
parameters as several independent models corresponding to
different choices of tuning parameters. Some of the FCN-net
models with 32 layers are discarded as they require too much
memory.

All models work with input image patches that are smaller
than a typical EL image. The size of the input image regulates
the information that is used for defect forecast. As shunts
defects and droplets have a local nature, we select a square
image patch size with an edge length varying between 15 and
30 times the cell width.

B. Data augmentation

We apply data augmentation to the training data set. The
data augmentation is performed in order to increase the
number of images to train our models with. This is particularly
important for recognizing droplets as we have few labelled
images to train with.

For the data augmentation, it is important to note that
convolutional neural networks are able to incorporate spatial
information in its model, however, they are not equivariant to
scale and rotation transformations. Thus, the augmentation of
data must entail scaling and rotation operations in order to
boost the ability of the network to generalize, [40].

We organized data augmentation procedures in a pipeline of
data augmentation generators. A generator accepts an image
as its input and outputs a list of augmented images. Every
image in the output is “piped” to the following generator in
the pipeline. Thus, a single input image generates a series of
augmented output images.
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Encoder Decoder

Figure 3. Schematic representation of an encoder-decoder architecture. The left-hand side image is an input image patch that is passed to a series of the
computational layers. The right-hand side image is an output binary image. The arrows are skipping connection layers, where input is being copied directly
from encoder to a decoder.

Every data augmentation generator has a set of tunable
parameters. These parameters regulate the properties of the
generated output images, such as size and transformation
severity.

First augmentation transformation we perform are done on
the original pair of EL and the corresponding label images.
An image is re-sized preserving the aspect ratio, with the
scaling factors ranging in the interval [0.7, 1.3]. This scaling
operation allows to populate the training dataset with examples
of modules of slightly different cell sizes. After scaling, we
perform mirroring of the image with respect to the vertical
and horizontal axes, and apply the following contrast transfor-
mation to the EL image:(

(1− α)M − (1 + α)m
) I −m
M −m

+m(1 + α), (1)

where M and m are the maximum and the minimum values
of the image, α is selected in a range of values [−0.4, 0.4].

Our segmentation models use a particular dimension of the
input image. For example, as mentioned before Mobile-net
accepts only images with the width and height of 224 pixels,
and the dimensions of the ResNet should be divisible by 32.
For this reason the final generator in the pipeline generates
the subimages of the required dimensions. The subimages
are generated using a sliding window of the selected size.
The window shift is chosen to be 50 pixels, thus, we obtain
overlapping subimages.

The ResNet networks input image size is chosen to be
equal of width and height 256 and 512 pixels, the Mobile-
net network — 224 pixel and the PSP-net network — 192
pixels.

The defects are distributed in a non-uniform way. Therefore,
to have a representative sample, we select only those subim-
ages that contain at least 200 pixels corresponding to a defect.
All the training images are shuffled, so that, a particular order
of the generator output does not play any role.

C. Training

We use the transfer learning technique [40], i.e. we use the
pre-trained model on an unrelated dataset of images, and fine-
tune it to adapt to the new task. We use weights that were

pre-trained on the ImageNet dataset, [49]. The weights for
various networks are accessible in [50].

In our training we use the dropout regularization technique,
with the dropout rate chosen 0.2; as well as the batch normal-
ization technique. The latter method allows to normalize the
inputs of every layer in the network, that helps reduce effect
of the so-called covariance shift, [51].

For the loss function we use the categorical cross-entropy
function, [40]. We use the AdaDelta optimizer [52], as it
requires no manual setting of a learning rate; it is robust to
large gradients, noise architecture choice and insensitive to
hyperparameters. The number of epochs is chosen to equal 100
with 512 gradient steps in each epoch. The training process
stabilizes by this time, with no overfitting being observed in
accuracy metrics evaluated on a testing dataset.

D. Accuracy metrics

To compare the trained segmentation models we compute
performance metrics on pairs consisting of a segmented image
and the corresponding ground truth mask.

The first performance metric is a common Jaccard index,
[53]. Given two binary masks A and B, the Jaccard index is
defined by J(A,B) := |A∩B|

|A∪B| , where |A| denotes the number
of non-zero elements in the binary mask A. The Jaccard index
attains values in the interval [0, 1], where 0 corresponds to the
case when the binary masks A and B do not have common
values.

We evaluate an index on a set of test images, thus obtaining
a sample of index values for each model. The Jaccard index
can be used to discover very bad-performing models, however,
it cannot identify a significant difference between models. We
conjecture that this happens because the Jaccard index reflects
not only errors in defect locations, but also in its shape.

To address this drawback we introduce a second set of
performance metrics, that ignores the shape information and
focuses on the accuracy of the defects identification. We
assume here that a single connected component in a segmented
image constitutes a defect.

To this end, let A and B be two binary masks, and K(A)
is a set of connected components in A. Define the component
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instance function

I(A,B) :=

∣∣x ∈ K(B) | ∃y ∈ K(A ∩B) : y ∩ x 6= ∅
∣∣

|K(B)|
. (2)

Note that the component instance function attains values in the
interval [0, 1], as the nominator is always less or equal than
denominator. The connected components are computed using
the labelling algorithm, [54].

The instance function is not symmetric, and if A is a
segmentation output and B is the ground truth, then I(B,A)
can be interpreted as a precision index and I(A,B) can be
interpreted as a recall index.

The precision and recall are typical metrics computed in
classification problems. In our case they can be interpreted in
the following way. The precision is the proportion of correctly
identified defects among all locations identified by a model,
while the recall is the fraction of all defects that were identified
by a model.

The component instance function formalises the meaning of
a single defect by using the notion of a connected component.
The defect is identified correctly, if the component on the
ground truth image and the segmented image have a non-zero
intersection.

E. Metrics baseline identification

A typical accuracy metric (or index) attains values in the
interval [0, 1], where 0 corresponds to a bad segmentation and
1 to a perfect segmentation. In practice, however, the value of
1 cannot be achieved. The reason for that in our case is the
lack of clearly defined ground truth segmentation.

This happens due to several reasons. Firstly, when a defect
expresses itself with a smooth gradient change in the image
pixel value intensity, the beginning of the defect can be
ambiguous. For example, this can be observed in a shunted
area, see Figure 2 (right). A shunt can be a microscopic defect,
but on an EL image it induces a much larger darkened region
with a smooth gradient change. Secondly, there can be too
many defects to label them manually with high accuracy. For
example, Figure 2 (left) shows a part of a module with so-
called droplets.

Therefore, to identify the values of the metrics that can
be considered as good, we propose the following procedure.
A set of images are segmented manually twice by the same
person. A sufficient amount of time (more than 1 week)
is taken between the first and second manual segmentation.
The resulting segmentation images are evaluated using the
performance metrics, to obtain the baseline values for the
metrics.

F. Model selection

Combinations of different encoder and decoder networks
with different tuning parameters yield a set of segmentation
models. In this section we address the question of how to select
the best model from this set, and discuss related problems.

Previously, we defined several metrics that are capable of
measuring the quality of the segmentation given a manually
segmented image. A two-stage procedure as described above

allows to identify the baseline values for each metric, which
allows to normalize the values and avoid the human bias
incorporated in the raw metrics.

However, it is not possible to select the best model based on
a single metric value. Firstly, from a sample of test images a
single metric cannot significantly distinguish between several
well performing models. At the same time, a visual inspection
of the evaluations of this model indicate that models differ.
Secondly, different metrics incorporate different information in
its values. For example, the precision metric I(B,A) measures
how accurate are the identified defects by the model, whereas
the recall metric I(A,B) measures the total percentage of all
identified defects.

Therefore, in order to address these problems we propose
the following heuristic two-stage procedure. In the first step
we select a set of models using a multi-objective optimization
similar to the one used by Waldner and Diakogiannis, [24].
We use our precision and recall indices as the targets in the
multi-objective optimization. In the second step, from a set
of chosen models we select the final model using the Jaccard
index.

V. RESULTS

To compute evaluation of a full sized module image we
compute evaluation on a set of overlapping subimages, where
the size of each subimage equals to the selected model input
image size. Note that this introduces a limit on the size of the
structures that can be detected as the model cannot properly
detect structures larger than the subimage size. The resulting
segmented image patches are combined with the overlapping
borders being removed.

We overlap images by selecting a shift of 10 pixels less
than what would be needed for producing subimages without
an overlap. The width of the removed subimage borders equals
to 5 pixels. The areas on the borders of the original image are
not overlapped, and hence not removed.

The purpose of overlapping is to mitigate an incorrect
segmentation close to the edges of the image patches. This
problem is observed frequently in the FCN-net networks.

After the image augmentation pipeline we have about 15000
training images for shunts and 5000 training images for
droplets.

Below we discuss the model selection for shunts and
droplets, we demonstrate examples of shunts and droplets
segmentation for the selected models, and provide details on
the implementation and time required for the segmentation.

A. Model selection

Figure 4 shows the estimated median of the precision
and recall indices for each of the model for droplets (top
figure) and shunts (bottom figure). The model evaluations are
performed on a testing dataset that was not used during the
training process.

The black line is the Pareto frontier of precision/recall multi-
objective optimization for the droplets and shunts models. The
Pareto frontier allows to select 6 models for droplets and 7
models for shunts. The red circle indicate the model on the
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Figure 4. Pareto frontier for the droplets (top) and shunts (bottom) models

Table II
FINAL EVALUATION OF THE SELECTED MODELS

Feature
Index Precision Recall Jaccard

Shunts 0.35 0.55 0.19
Droplets 0.61 0.68 0.27

frontier that maximizes the Jaccard index. For the shunts the
best model is Mobile-net-encoder and FCN-net-decoder, and
for the droplets the best model is VGG-net-encoder and U-
net-decoder.

Note that the estimated baseline for the precision and recall
indices are equal 0.8 for both shunts and droplets, the Jaccard
index baseline equals to 0.24 for shunts and 0.34 for droplets.

All selected models have an input image of dimensions
256 × 256 pixels (one of the tuning parameter for FCN-net
and U-net), and the kernel size of the FCN-net network equals
to 8.

We perform a final evaluation on a set of images disjoint
from training and testing images. Table II summarised the
median value of the precision, recall and Jaccard indices
evaluated on 24 shunts and 3 droplets images.

In Figure 5 we show examples of the segmentation of
droplets and shunts on two thin-film modules using the
selected models. On the left side of the figures is shown
the original image. On the right side is the binary mask of
the segmentation. In the centre is shown an original image
overlayed with the binary mask.

B. Segmentation examples and heat-maps
We apply the segmentation model for droplets and shunts for

each EL image in our database. By evaluating an average of the

Figure 5. An example of droplets (top) and shunts (bottom) segmentation

0 6.1e-3 1.2e-2 1.8e-2 2.5e-2

0 6.8e-4 1.8e-3 3.7e-3 >7.0e-3

Figure 6. Heat map of droplets (top) and shunts (bottom) locations. The
intensity scale indicates the probablity a pixel is marked as a droplet or a
shunt.

computed binary segmented image, we obtain so-called heat
maps. Figure 6 depicts heat maps based on 6000 EL images
for droplet (top figure) and shunts (bottom figure) locations.
The brighter areas correspond to locations where defects have
a higher probability of occurrence. The heat maps are given
with a scale that maps pixel value in heat map images to a
probability of shunts or droplets in that pixel. Note, that the
scale is logarithmic in Figure 6 (bottom), with the 1% of the
brightest observations are shown as the white color.

The droplets in Figure 6 (top) expresses a clear structure
where droplets are distributed along a broad arc along three
edges of the module. In the brighter areas of the arc, the
probability that a pixel is marked as a droplet is about 2.5%
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(148 times in 6000 images). The droplets do not occur in the
center of the modules. Furthermore, there are several dark lines
where fewer droplets are detected. The vertical and horizontal
dark lines appear to be interference of vertical isolation lines in
the modules as well as stitching lines in the image. However,
the diagonal lines do not correspond to any obvious structure
in the images that may interfere with droplet detection. We
infer the diagonal lines have a physical origin.

The heat map of shunts is shown in Figure 6 (bottom).
There is a great number of features to be seen, such as a
clear banded structure, high concentrations at certain edges
and locations, such as at the bottom edge where at the isolation
lines high concentrations of shunts are detected. Two cell
stripes in the bottom half of the module are more often
shunted. The stitching lines do not show up and thus do not
seem to interfere with shunt detection. The isolation lines are
associated with more detected shunts. However, only parts of
the isolation lines exhibit a larger concentration of shunts and
not all isolation lines are equally affected. For this reason we
believe the higher shunt probability around the isolation lines
is no artifact. There is a bright vertical line in the center. This
line does not correspond to the position of an isolation line or
stitching line. Note that in Figure 5 a slightly darker vertical
line is visible at the same position. However, in this example
no shunts are detected along this line. In other EL images this
darker line is not present (e.g. in Figure 1). The origin of this
line is unclear.

We would like to note that many features in Figure 6 are
rather subtle, and that these features only become visible when
an average of a large number of images is computed. Further-
more, some of these features are quite certainly performance
and reliability relevant (e.g. positions where shunts are likely
to occur). We thus believe the extraction of such features can
give manufacturers a better insight in their production process
and thus contribute to process optimization and quality control.

C. Correlation to performance data

Using the computed segmentation of EL images it is pos-
sible to correlate difference characteristics of the discovered
defects in EL images and the performance of the modules.

Shunts originate from holes in the CIGS absorber, [34, 35],
and primarely affect the low-light performance and the shunt
resistance of PV modules [37]. A lower shunt resistance is
expected to affect the fill factor and the slope of the IV
characteristics around short circuit conditions. Note that it is a
common practise in industry to count shunts in order to asses
module quality.

Figure 7 shows a correlative plot between the slope of
the IV curve near the short-circuit point and the number
of the discovered shunts. The figure reveals no significant
correlations between the variables. Unfortunately, we do not
have low-light performance data for the correlation.

Our study indicated that there are no significant correlations
between size and amount of defects and the module perfor-
mance data. Detailed discussion on the correlations between
the discovered defects and performance of the modules is
beyond the discussed topic of this paper.
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Figure 7. Slope of the IV curve near the short circuit current point versus
number of shunts detected in the corresponding EL image.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we applied the encoder-decoder deep neural
networks in order to perform semantic segmentation of EL
images of thin-film modules. The framework is general and
applicable to other types of defects, PV images (e.g. thermog-
raphy), as well as PV technologies.

We demonstrated the use of encoder-decoder deep neural
networks to detect shunt-type defects and so-called droplets
in thin-film CIGS solar cells. Several models are tested using
various combinations of encoder-decoder layers. A method is
proposed to select the best model based on the collection of
metrics that evaluate different accuracy characteristics.

We show exemplary results for our selected best models of
shunts and droplets. Furthermore, we analyzed a database with
6000 images of CIGS modules, all of one module type and one
manufacturer. We show heat maps depicting the probability of
a shunt or droplet occurring at a certain location in the solar
module. The results show that the systematic segmentation of a
large volume of images can reveal subtle features which cannot
be inferred from studying individual images. Thus, we argue
this type of segmentation models may aid process optimization
and quality control by manufacturers.

Image segmentation methods is an active field of research,
and there are several ways our approach can be extended.
Firstly, the ensemble learning technique can be used to
combine several segmentation models together with an aim
to improve the model accuracy. Secondly, one can use the
Generative Adversarial type of Neural networks (GAN) that
can learn the defining features of the sample of images.
The segmentation models can be then built on top of the
constructed network.

Lastly, we remark that the code is available upon request,
and the labelled dataset is available online, see [39].
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