000904122 001__ 904122
000904122 005__ 20250813092821.0
000904122 0247_ $$2doi$$a10.1007/s11517-021-02446-3
000904122 0247_ $$2ISSN$$a0025-696X
000904122 0247_ $$2ISSN$$a0140-0118
000904122 0247_ $$2ISSN$$a1741-0444
000904122 0247_ $$2Handle$$a2128/30603
000904122 0247_ $$2altmetric$$aaltmetric:121061792
000904122 0247_ $$2pmid$$a34950998
000904122 0247_ $$2WOS$$aWOS:000733700900001
000904122 037__ $$aFZJ-2021-05692
000904122 041__ $$aEnglish
000904122 082__ $$a610
000904122 1001_ $$00000-0001-7895-761X$$aWaldmann, Moritz$$b0$$eCorresponding author
000904122 245__ $$aAn effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology
000904122 260__ $$aHeidelberg$$bSpringer$$c2022
000904122 3367_ $$2DRIVER$$aarticle
000904122 3367_ $$2DataCite$$aOutput Types/Journal article
000904122 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643288110_15719
000904122 3367_ $$2BibTeX$$aARTICLE
000904122 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904122 3367_ $$00$$2EndNote$$aJournal Article
000904122 520__ $$aPhysics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these methods are commonly developed as isolated solutions which do not consider the whole chain of data processing from initial medical to higher valued data. This manuscript presents a workflow that incorporates the whole data processing pipeline based on a environment. Therefore, medical image data are fully automatically pre-processed by machine learning algorithms. The resulting geometries employed for the simulations on high-performance computing systems reach an accuracy of up to 99.5% compared to manually segmented geometries. Additionally, the user is enabled to upload and visualize 4-phase rhinomanometry data. Subsequent analysis and visualization of the simulation outcome extend the results of standardized diagnostic methods by a physically sound interpretation. Along with a detailed presentation of the methodologies, the capabilities of the workflow are demonstrated by evaluating an exemplary medical case. The pipeline output is compared to 4-phase rhinomanometry data. The comparison underlines the functionality of the pipeline. However, it also illustrates the influence of mucosa swelling on the simulation.
000904122 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000904122 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000904122 536__ $$0G:(DE-Juel1)jhpc54_20190501$$aAnalysis of Respiratory and Cerebrospinal Flows by a Coupled Lattice-Boltzmann Method and Machine Learning Approach (jhpc54_20190501)$$cjhpc54_20190501$$fAnalysis of Respiratory and Cerebrospinal Flows by a Coupled Lattice-Boltzmann Method and Machine Learning Approach$$x2
000904122 536__ $$0G:(DE-Juel1)jhpc54_20180501$$aRhinodiagnost (jhpc54_20180501)$$cjhpc54_20180501$$fRhinodiagnost$$x3
000904122 542__ $$2Crossref$$i2021-12-23$$uhttps://creativecommons.org/licenses/by/4.0
000904122 542__ $$2Crossref$$i2021-12-23$$uhttps://creativecommons.org/licenses/by/4.0
000904122 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904122 7001_ $$0P:(DE-Juel1)174329$$aGrosch, Alice$$b1$$ufzj
000904122 7001_ $$0P:(DE-Juel1)177933$$aWitzler, Christian$$b2$$ufzj
000904122 7001_ $$0P:(DE-HGF)0$$aLehner, Matthias$$b3
000904122 7001_ $$0P:(DE-HGF)0$$aBenda, Odo$$b4
000904122 7001_ $$0P:(DE-HGF)0$$aKoch, Walter$$b5
000904122 7001_ $$0P:(DE-HGF)0$$aVogt, Klaus$$b6
000904122 7001_ $$0P:(DE-HGF)0$$aKohn, Christopher$$b7
000904122 7001_ $$0P:(DE-HGF)0$$aSchröder, Wolfgang$$b8
000904122 7001_ $$0P:(DE-Juel1)168541$$aGöbbert, Jens Henrik$$b9$$ufzj
000904122 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b10$$ufzj
000904122 77318 $$2Crossref$$3journal-article$$a10.1007/s11517-021-02446-3$$bSpringer Science and Business Media LLC$$d2021-12-23$$n2$$p365-391$$tMedical & Biological Engineering & Computing$$v60$$x0140-0118$$y2021
000904122 773__ $$0PERI:(DE-600)2052667-2$$a10.1007/s11517-021-02446-3$$n2$$p365-391$$tMedical & biological engineering & computing$$v60$$x0140-0118$$y2022
000904122 8564_ $$uhttps://juser.fz-juelich.de/record/904122/files/Waldmann2022_Article_AnEffectiveSimulation-AndMeasu.pdf$$yOpenAccess
000904122 909CO $$ooai:juser.fz-juelich.de:904122$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904122 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000904122 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000904122 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904122 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000904122 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED BIOL ENG COMPUT : 2015
000904122 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000904122 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000904122 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000904122 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000904122 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000904122 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904122 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000904122 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000904122 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000904122 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000904122 9141_ $$y2022
000904122 9101_ $$0I:(DE-588b)36225-6$$60000-0001-7895-761X$$aRWTH Aachen$$b0$$kRWTH
000904122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174329$$aForschungszentrum Jülich$$b1$$kFZJ
000904122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177933$$aForschungszentrum Jülich$$b2$$kFZJ
000904122 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b8$$kRWTH
000904122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168541$$aForschungszentrum Jülich$$b9$$kFZJ
000904122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b10$$kFZJ
000904122 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000904122 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000904122 920__ $$lyes
000904122 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000904122 980__ $$ajournal
000904122 980__ $$aVDB
000904122 980__ $$aUNRESTRICTED
000904122 980__ $$aI:(DE-Juel1)JSC-20090406
000904122 9801_ $$aFullTexts
000904122 999C5 $$1N Achilles$$2Crossref$$uAchilles N, Pasch N, Lintermann A, Schrȯder W, Mȯ,sges R (2013) Computational fluid dynamics: a suitable assessment tool for demonstrating the antiobstructive effect of drugs in the therapy of allergic rhinitis. Acta otorhinolaryngol Itali organ ufficiale della Soc italian otorinolaringol chirurgia cervico-facciale 1:36–42$$y2013
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1098/rsif.2014.0880$$uBates AJ, Doorly DJ, Cetto R, Calmet H, Gambaruto AM, Tolley NS, Houzeaux G, Schroter RC (2014) Dynamics of airflow in a short inhalation. J R Soc Interface 12(102):20140880–20140880. https://doi.org/10.1098/rsif.2014.0880
000904122 999C5 $$1PL Bhatnagar$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.94.511$$p511 -$$tPhys Rev$$uBhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys Rev 94 (3):511–525. https://doi.org/10.1103/PhysRev.94.511$$v94$$y1954
000904122 999C5 $$1M Bouzidi$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1399290$$p3452 -$$tPhys Fluids$$uBouzidi M, Firdaouss M, Lallemand P (2001) M,omentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluids 13(11):3452–3459. https://doi.org/10.1063/1.1399290$$v13$$y2001
000904122 999C5 $$1MA Burgos$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00405-017-4611-y$$p3121 -$$tEur Arch Otorhinol$$uBurgos MA, Sanmiguel-Rojas E, del Pino C, Sevilla-García MA, Esteban-Ortega F (2017) New cfd tools to evaluate nasal airflow. Eur Arch Otorhinol 274(8):3121–3128. https://doi.org/10.1007/s00405-017-4611-y$$v274$$y2017
000904122 999C5 $$1H Calmet$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.compbiomed.2015.12.003$$p166 -$$tComput Biol Med$$uCalmet H, Gambaruto AM, Bates AJ, Vȧzquez M, Houzeaux G, Doorly DJ (2016) Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput Biol Med 69:166–180. https://doi.org/10.1016/j.compbiomed.2015.12.003$$v69$$y2016
000904122 999C5 $$1H Calmet$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jaerosci.2018.11.001$$p1 -$$tJ Aerosol Sci$$uCalmet H, Yamamoto T, Eguzkitza B, Lehmkuhl O, Olivares E, Kobayashi Y, Tomoda K, Houzeaux G, Vȧzquez M (2019) Numerical evaluation of aerosol exhalation through nose treatment. J Aerosol Sci 128:1–13. https://doi.org/10.1016/j.jaerosci.2018.11.001$$v128$$y2019
000904122 999C5 $$1KY Chien$$2Crossref$$9-- missing cx lookup --$$a10.2514/3.51043$$p33 -$$tAIAA J$$uChien KY (1982) Predictions of channel and Boundary-Layer flows with a Low-Reynolds-Number turbulence model. AIAA J 20(1):33–38. https://doi.org/10.2514/3.51043$$v20$$y1982
000904122 999C5 $$1P Clement$$2Crossref$$uClement P (1984) Committee report on standardization of rhinomanometry. Rhinology 22 (3):151–5$$y1984
000904122 999C5 $$1P Clement$$2Crossref$$uClement P, Gordts F (2005) Consensus report on acoustic rhinometry and rhinomanometry. Rhinology 43(3):169–79$$y2005
000904122 999C5 $$1I Croy$$2Crossref$$9-- missing cx lookup --$$a10.1002/lary.20824$$p826 -$$tLaryngoscope$$uCroy I, Hummel T, Pade A, Pade J (2010) Quality of life following nasal surgery. Laryngoscope 120(4):826–831. https://doi.org/10.1002/lary.20824$$v120$$y2010
000904122 999C5 $$1M Damm$$2Crossref$$9-- missing cx lookup --$$a10.1097/00005537-200202000-00020$$p310 -$$tLaryngoscope$$uDamm M, Quante G, Jungehuelsing M, Stennert E (2002) Impact of functional endoscopic sinus surgery on symptoms and quality of life in chronic rhinosinusitis. Laryngoscope 112(2):310–315. https://doi.org/10.1097/00005537-200202000-00020$$v112$$y2002
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.6028/NIST.FIPS.197$$uDworkin MJ, Barker EB, Nechvatal JR, Foti J, Bassham LE, Roback E, Dray JF Jr (2001) Advanced encryption standard (AES). https://doi.org/10.6028/NIST.FIPS.197
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-14243-7_63$$uEitel G, Freitas RK, Lintermann A, Meinke M, Schröder W (2010) Numerical Simulation of Nasal Cavity Flow Based on a Lattice-Boltzmann Method. In: Dillmann A, Heller G, Klaas M, Kreplin HP, Nitsche W, Schröder W (eds) New Results in Numerical and Experimental Fluid Mechanics VII, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 112. Springer, Berlin, pp 513–520. https://doi.org/10.1007/978-3-642-14243-7_63
000904122 999C5 $$1G Eitel-Amor$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.compfluid.2013.01.013$$p127 -$$tComput Fluids$$uEitel-Amor G, Meinke M, Schrȯder W (2013) A lattice-Boltzmann method with hierarchically refined meshes. Comput Fluids 75:127–139. https://doi.org/10.1016/j.compfluid.2013.01.013$$v75$$y2013
000904122 999C5 $$1M Faramarzi$$2Crossref$$9-- missing cx lookup --$$a10.2500/ar.2014.5.0090$$p70 -$$tAllergy Rhinol (Providence R.I.)$$uFaramarzi M, Baradaranfar M, Abouali O, Atighechi S, Ahmadi G, Farhadi P, Keshavarzian E, Behniafard N, Baradaranfar A (2014) Numerical investigation of the flow field in realistic nasal septal perforation geometry. Allergy Rhinol (Providence R.I.) 5:70–77. https://doi.org/10.2500/ar.2014.5.0090$$v5$$y2014
000904122 999C5 $$1RK Freitas$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.compfluid.2011.02.019$$p115 -$$tComput Fluids$$uFreitas RK, Henze A, Meinke M, Schrȯder W (2011) Analysis of Lattice-Boltzmann methods for internal flows. Comput Fluids 47(1):115–121. https://doi.org/10.1016/j.compfluid.2011.02.019$$v47$$y2011
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-030-02465-9_48$$uGöbbert J.H, Kreuzer T, Grosch A, Lintermann A, Riedel M (2018) Enabling Interactive Supercomputing at JSC Lessons Learned: ISC High Performance 2018 International Workshops, Frankfurt/Main, Germany, Revised Selected Papers, pp 669–677. https://doi.org/10.1007/978-3-030-02465-9_48
000904122 999C5 $$1Z Guo$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.75.036704$$p75 -$$tPhys Rev E$$uGuo Z, Zheng C, Shi B (2007) Thermal lattice boltzmann equation for low mach number flows: Decoupling model. Phys Rev E 036704:75. https://doi.org/10.1103/PhysRevE.75.036704$$v036704$$y2007
000904122 999C5 $$1I Hörschler$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.euromechflu.2005.11.006$$p471 -$$tEur J Mech - B/Fluids$$uHörschler I, Brücker C, Schröder W, Meinke M (2006) Investigation of the impact of the geometry on the nose flow. Eur J Mech - B/Fluids 25:471–490. https://doi.org/10.1016/j.euromechflu.2005.11.006$$v25$$y2006
000904122 999C5 $$1I Hörschler$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jbiomech.2009.12.008$$p1081 -$$tJ Biomech$$uHörschler I, Schröder W, Meinke M (2010) On the assumption of steadiness of nasal cavity flow. J Biomech 43(6):1081–1085. https://doi.org/10.1016/j.jbiomech.2009.12.008$$v43$$y2010
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-4-121-1$$uJülich Supercomputing Centre: JURECA: Modular supercomputer at Jülich Supercomputing Centre. J Large-scale Res Facilities 4(A132). https://doi.org/10.17815/jlsrf-4-121-1
000904122 999C5 $$1SY Kim$$2Crossref$$9-- missing cx lookup --$$a10.2319/092917-656.1$$p435 -$$tAngle Orthodont$$uKim SY, Park YC, Lee KJ, Lintermann A, Han SS, Yu HS, Choi YJ (2018) Assessment of changes in the nasal airway after nonsurgical miniscrew-assisted rapid maxillary expansion in young adults. Angle Orthodont 88(4):435–441. https://doi.org/10.2319/092917-656.1$$v88$$y2018
000904122 999C5 $$2Crossref$$uKingma DP, Ba J (2014) Adam: A method for stochastic optimization. International Conference on Learning Representations
000904122 999C5 $$1T Lewiner$$2Crossref$$9-- missing cx lookup --$$a10.1080/10867651.2003.10487582$$p1 -$$tJ Graph Tools$$uLewiner T, Lopes H, Vieira AW, Tavares G (2003) Efficient implementation of marching cubes’ cases with topological guarantees. J Graph Tools 8(2):1–15. https://doi.org/10.1080/10867651.2003.10487582$$v8$$y2003
000904122 999C5 $$1L Li$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcp.2012.11.027$$p366 -$$tJ Comput Phys$$uLi L, Mei R, Klausner JF (2013) Boundary conditions for thermal lattice Boltzmann equation method. J Comput Phys 237:366–395. https://doi.org/10.1016/j.jcp.2012.11.027$$v237$$y2013
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/ICCV.2017.324$$uLin T, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: 2017 IEEE International conference on computer vision (ICCV), pp 2999–3007. https://doi.org/10.1109/ICCV.2017.324
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7712/100016.1885.5067$$uLintermann A (2016) Efficient parallel geometry distribution for the simulation of complex flows Papadrakakis M, Papadopoulos V, Stefanou G, Plevris V (eds), Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, Athens. https://doi.org/10.7712/100016.1885.5067
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-030-21217-9_9$$uLintermann A (2020) Application of Computational Fluid Dynamics Methods to Understand Nasal Cavity Flows. In: Cingi C, Muluk NB (eds) All Around the Nose, chap. 9. 1st edn. https://doi.org/10.1007/978-3-030-21217-9_9. Springer International Publishing, Cham, pp 75–84
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-35680-3_69$$uLintermann A, Eitel-Amor G, Meinke M, Schröder W (2013) Lattice-Boltzmann Solutions with Local Grid Refinement for Nasal Cavity Flows. In: New Results in Numerical and Experimental Fluid Mechanics VIII. Springer, pp 583–590. https://doi.org/10.1007/978-3-642-35680-3_69
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-22244-3_10$$uLintermann A, Meinke M, Schrȯder W (2011) Investigations of the Inspiration and Heating Capability of the Human Nasal Cavity Based on a Lattice-Boltzmann Method. In: Proceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows (SIMBIO 2011), Brussels
000904122 999C5 $$1A Lintermann$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.compbiomed.2013.09.003$$p1833 -$$tComput Biol Med$$uLintermann A, Meinke M, Schröder W (2013) Fluid mechanics based classification of the respiratory efficiency of several nasal cavities. Comput Biol Med 43(11):1833–1852. https://doi.org/10.1016/j.compbiomed.2013.09.003$$v43$$y2013
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/10618562.2020.1742328$$uLintermann A, Meinke M, Schrȯder W (2020) Zonal Flow Solver (ZFS): a highly efficient multi-physics simulation framework. International Journal of Computational Fluid Dynamics, pp 1–28. https://doi.org/10.1080/10618562.2020.1742328
000904122 999C5 $$1A Lintermann$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cma.2014.04.009$$p131 -$$tComput Methods Appl Mech Eng$$uLintermann A, Schlimpert S, Grimmen J, Günther C, Meinke M, Schröder W (2014) Massively parallel grid generation on hpc systems. Comput Methods Appl Mech Eng 277:131–153. https://doi.org/10.1016/j.cma.2014.04.009$$v277$$y2014
000904122 999C5 $$1A Lintermann$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.euromechflu.2017.01.008$$p73 -$$tEur J Mech - B/Fluids$$uLintermann A, Schrȯder W (2017) Simulation of aerosol particle deposition in the upper human tracheobronchial tract. Eur J Mech - B/Fluids 63:73–89. https://doi.org/10.1016/j.euromechflu.2017.01.008$$v63$$y2017
000904122 999C5 $$1A Lintermann$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10494-017-9876-0$$p89 -$$tFlow Turbul nce Combust$$uLintermann A, Schrȯder W (2019) A Hierarchical Numerical Journey Through the Nasal Cavity: from Nose-Like Models to Real Anatomies. Flow Turbul nce Combust 102(1):89–116. https://doi.org/10.1007/s10494-017-9876-0$$v102$$y2019
000904122 999C5 $$1G Litjens$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.media.2017.07.005$$p60 -$$tMed Image Anal$$uLitjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sánchez C. I. (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005$$v42$$y2017
000904122 999C5 $$1WE Lorensen$$2Crossref$$9-- missing cx lookup --$$a10.1145/37402.37422$$p163 -$$tACM SIGGRAPH Comput Graph$$uLorensen WE, Cline HE (1987) Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph 21(4):163–169$$v21$$y1987
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-319-46723-8_17$$uManinis KK, Pont-Tuset J, Arbeláez P, Gool LV (2016) Deep retinal image understanding. In: Ourselin S, Joskowicz J, Sabuncu MR, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer International Publishing, pp 140–148
000904122 999C5 $$1K Peksis$$2Crossref$$9-- missing cx lookup --$$a10.4193/RHINOL/18.032$$p1081 -$$tRhinol Online$$uPeksis K, Unger J, Paulauska S, Emsina A, Blumbergs M, Vogt K, Wernecke KD (2018) Relationships among nasal resistance, age and anthropometric parameters of the nose during growth. Rhinol Online 1:1081–1085. https://doi.org/10.4193/RHINOL/18.032$$v1$$y2018
000904122 999C5 $$1Yh Qian$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01060932$$p231 -$$tJ Sci Comput$$uQian Yh (1993) Simulating thermohydrodynamics with lattice BGK models. J Sci Comput 8 (3):231–242. https://doi.org/10.1007/BF01060932$$v8$$y1993
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.17487/rfc1321$$uRivest R (1992) The MD5 Message-Digest Algorithm. https://doi.org/10.17487/rfc1321
000904122 999C5 $$2Crossref$$uSaint-Venant B, Wantzel L (1839) Mėmoire et expėrience sur l’ėcoulement dėterminė par des diffėrences de pressions considėrables. J l’Ėcole Polytechn H.27:85ff
000904122 999C5 $$1G Scadding$$2Crossref$$9-- missing cx lookup --$$a10.1186/2045-7022-1-2$$p2 -$$tClin Transl Allergy$$uScadding G, Hellings P, Alobid I, Bachert C, Fokkens W, Gerth van Wijk R, Gevaert P, Guilemany J, Kalogjera L, Lund V, Mullol J, Passalacqua G, Toskala E, Drunen C (2011) Diagnostic tools in rhinology eaaci position paper. Clin Transl Allergy 1:2–40. https://doi.org/10.1186/2045-7022-1-2$$v1$$y2011
000904122 999C5 $$1K Vogt$$2Crossref$$9-- missing cx lookup --$$a10.4193/Rhin17.084$$p133 -$$tRhinology$$uVogt K, Bachmann-Harildstad G, Wernecke KD, Garyuk O, Lintermann A, Nechyporenko A, Peters F (2018) The new agreement of the international RIGA consensus conference on nasal airway function tests. Rhinology 56(2):133–143. https://doi.org/10.4193/Rhino17.084$$v56$$y2018
000904122 999C5 $$2Crossref$$uVogt K, Jalowayski AA (2010) 4 - Phase-Rhinomanometry, basics and practice 2010 rhinology supplement (21)
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1515/rjr-2016-0017$$uVogt K, Wernecke KD, Argale M, Kaulina K (2016) Classification of total nasal obstruction in 10,033 cases by 4-phase –rhinomanometry. Roman J Rhinol 6(23). https://doi.org/10.1515/rjr-2016-0017
000904122 999C5 $$1K Vogt$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00405-015-3723-5$$p1185 -$$tEur Arch Oto-Rhino-Laryngol$$uVogt K, Wernecke KD, Behrbohm H, Gubisch W, Argale M (2016) Four-phase rhinomanometry: a multicentric retrospective analysis of 36,563 clinical measurements. Eur Arch Oto-Rhino-Laryngol 273 (5):1185–1198. https://doi.org/10.1007/s00405-015-3723-5$$v273$$y2016
000904122 999C5 $$1A Voulodimos$$2Crossref$$uVoulodimos A, Doulamis N, Doulamis A, Protopapadakis E (2018) Deep Learning for Computer Vision: A Brief Review. Comput Intell Neurosci 2018:7068349$$y2018
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-030-25253-3_80$$uWaldmann M, Lintermann A, Choi YJ, Schröder W (2020) Analysis of the Effects of MARME Treatment on Respiratory Flow Using the Lattice-Boltzmann Method. In: New Results in Numerical and Experimental Fluid Mechanics XII. Springer, Darmstadt, pp 853–863. https://doi.org/10.1007/978-3-030-25253-3_80
000904122 999C5 $$2Crossref$$uWilcox DC (1998) Turbulence Modeling for CFD, 2nd editio edn. DCW Industries, La Canada
000904122 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/ICCV.2015.164$$uXie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403
000904122 999C5 $$2Crossref$$uYoulten L (1980) The peak nasal inspiratory flow meter: a newinstrument for the assessment of the response to immunotherapy in seasonal allergic rhinitis. Allergol Immunopathol 8(344)