001     904122
005     20250813092821.0
024 7 _ |2 doi
|a 10.1007/s11517-021-02446-3
024 7 _ |2 ISSN
|a 0025-696X
024 7 _ |2 ISSN
|a 0140-0118
024 7 _ |2 ISSN
|a 1741-0444
024 7 _ |2 Handle
|a 2128/30603
024 7 _ |2 altmetric
|a altmetric:121061792
024 7 _ |2 pmid
|a 34950998
024 7 _ |2 WOS
|a WOS:000733700900001
037 _ _ |a FZJ-2021-05692
041 _ _ |a English
082 _ _ |a 610
100 1 _ |0 0000-0001-7895-761X
|a Waldmann, Moritz
|b 0
|e Corresponding author
245 _ _ |a An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology
260 _ _ |a Heidelberg
|b Springer
|c 2022
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1643288110_15719
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Physics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these methods are commonly developed as isolated solutions which do not consider the whole chain of data processing from initial medical to higher valued data. This manuscript presents a workflow that incorporates the whole data processing pipeline based on a environment. Therefore, medical image data are fully automatically pre-processed by machine learning algorithms. The resulting geometries employed for the simulations on high-performance computing systems reach an accuracy of up to 99.5% compared to manually segmented geometries. Additionally, the user is enabled to upload and visualize 4-phase rhinomanometry data. Subsequent analysis and visualization of the simulation outcome extend the results of standardized diagnostic methods by a physically sound interpretation. Along with a detailed presentation of the methodologies, the capabilities of the workflow are demonstrated by evaluating an exemplary medical case. The pipeline output is compared to 4-phase rhinomanometry data. The comparison underlines the functionality of the pipeline. However, it also illustrates the influence of mucosa swelling on the simulation.
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(DE-HGF)POF4-5112
|a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 1
536 _ _ |0 G:(DE-Juel1)jhpc54_20190501
|a Analysis of Respiratory and Cerebrospinal Flows by a Coupled Lattice-Boltzmann Method and Machine Learning Approach (jhpc54_20190501)
|c jhpc54_20190501
|f Analysis of Respiratory and Cerebrospinal Flows by a Coupled Lattice-Boltzmann Method and Machine Learning Approach
|x 2
536 _ _ |0 G:(DE-Juel1)jhpc54_20180501
|a Rhinodiagnost (jhpc54_20180501)
|c jhpc54_20180501
|f Rhinodiagnost
|x 3
542 _ _ |2 Crossref
|i 2021-12-23
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |2 Crossref
|i 2021-12-23
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)174329
|a Grosch, Alice
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)177933
|a Witzler, Christian
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Lehner, Matthias
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Benda, Odo
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Koch, Walter
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Vogt, Klaus
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Kohn, Christopher
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Schröder, Wolfgang
|b 8
700 1 _ |0 P:(DE-Juel1)168541
|a Göbbert, Jens Henrik
|b 9
|u fzj
700 1 _ |0 P:(DE-Juel1)165948
|a Lintermann, Andreas
|b 10
|u fzj
773 1 8 |2 Crossref
|3 journal-article
|a 10.1007/s11517-021-02446-3
|b Springer Science and Business Media LLC
|d 2021-12-23
|n 2
|p 365-391
|t Medical & Biological Engineering & Computing
|v 60
|x 0140-0118
|y 2021
773 _ _ |0 PERI:(DE-600)2052667-2
|a 10.1007/s11517-021-02446-3
|n 2
|p 365-391
|t Medical & biological engineering & computing
|v 60
|x 0140-0118
|y 2022
856 4 _ |u https://juser.fz-juelich.de/record/904122/files/Waldmann2022_Article_AnEffectiveSimulation-AndMeasu.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904122
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)36225-6
|6 0000-0001-7895-761X
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)174329
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)177933
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 8
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)168541
|a Forschungszentrum Jülich
|b 9
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165948
|a Forschungszentrum Jülich
|b 10
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5112
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 1
914 1 _ |y 2022
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b MED BIOL ENG COMPUT : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts
999 C 5 |1 N Achilles
|2 Crossref
|u Achilles N, Pasch N, Lintermann A, Schrȯder W, Mȯ,sges R (2013) Computational fluid dynamics: a suitable assessment tool for demonstrating the antiobstructive effect of drugs in the therapy of allergic rhinitis. Acta otorhinolaryngol Itali organ ufficiale della Soc italian otorinolaringol chirurgia cervico-facciale 1:36–42
|y 2013
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.1098/rsif.2014.0880
|u Bates AJ, Doorly DJ, Cetto R, Calmet H, Gambaruto AM, Tolley NS, Houzeaux G, Schroter RC (2014) Dynamics of airflow in a short inhalation. J R Soc Interface 12(102):20140880–20140880. https://doi.org/10.1098/rsif.2014.0880
999 C 5 |1 PL Bhatnagar
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRev.94.511
|p 511 -
|t Phys Rev
|u Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys Rev 94 (3):511–525. https://doi.org/10.1103/PhysRev.94.511
|v 94
|y 1954
999 C 5 |1 M Bouzidi
|2 Crossref
|9 -- missing cx lookup --
|a 10.1063/1.1399290
|p 3452 -
|t Phys Fluids
|u Bouzidi M, Firdaouss M, Lallemand P (2001) M,omentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluids 13(11):3452–3459. https://doi.org/10.1063/1.1399290
|v 13
|y 2001
999 C 5 |1 MA Burgos
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/s00405-017-4611-y
|p 3121 -
|t Eur Arch Otorhinol
|u Burgos MA, Sanmiguel-Rojas E, del Pino C, Sevilla-García MA, Esteban-Ortega F (2017) New cfd tools to evaluate nasal airflow. Eur Arch Otorhinol 274(8):3121–3128. https://doi.org/10.1007/s00405-017-4611-y
|v 274
|y 2017
999 C 5 |1 H Calmet
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.compbiomed.2015.12.003
|p 166 -
|t Comput Biol Med
|u Calmet H, Gambaruto AM, Bates AJ, Vȧzquez M, Houzeaux G, Doorly DJ (2016) Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput Biol Med 69:166–180. https://doi.org/10.1016/j.compbiomed.2015.12.003
|v 69
|y 2016
999 C 5 |1 H Calmet
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.jaerosci.2018.11.001
|p 1 -
|t J Aerosol Sci
|u Calmet H, Yamamoto T, Eguzkitza B, Lehmkuhl O, Olivares E, Kobayashi Y, Tomoda K, Houzeaux G, Vȧzquez M (2019) Numerical evaluation of aerosol exhalation through nose treatment. J Aerosol Sci 128:1–13. https://doi.org/10.1016/j.jaerosci.2018.11.001
|v 128
|y 2019
999 C 5 |1 KY Chien
|2 Crossref
|9 -- missing cx lookup --
|a 10.2514/3.51043
|p 33 -
|t AIAA J
|u Chien KY (1982) Predictions of channel and Boundary-Layer flows with a Low-Reynolds-Number turbulence model. AIAA J 20(1):33–38. https://doi.org/10.2514/3.51043
|v 20
|y 1982
999 C 5 |1 P Clement
|2 Crossref
|u Clement P (1984) Committee report on standardization of rhinomanometry. Rhinology 22 (3):151–5
|y 1984
999 C 5 |1 P Clement
|2 Crossref
|u Clement P, Gordts F (2005) Consensus report on acoustic rhinometry and rhinomanometry. Rhinology 43(3):169–79
|y 2005
999 C 5 |1 I Croy
|2 Crossref
|9 -- missing cx lookup --
|a 10.1002/lary.20824
|p 826 -
|t Laryngoscope
|u Croy I, Hummel T, Pade A, Pade J (2010) Quality of life following nasal surgery. Laryngoscope 120(4):826–831. https://doi.org/10.1002/lary.20824
|v 120
|y 2010
999 C 5 |1 M Damm
|2 Crossref
|9 -- missing cx lookup --
|a 10.1097/00005537-200202000-00020
|p 310 -
|t Laryngoscope
|u Damm M, Quante G, Jungehuelsing M, Stennert E (2002) Impact of functional endoscopic sinus surgery on symptoms and quality of life in chronic rhinosinusitis. Laryngoscope 112(2):310–315. https://doi.org/10.1097/00005537-200202000-00020
|v 112
|y 2002
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.6028/NIST.FIPS.197
|u Dworkin MJ, Barker EB, Nechvatal JR, Foti J, Bassham LE, Roback E, Dray JF Jr (2001) Advanced encryption standard (AES). https://doi.org/10.6028/NIST.FIPS.197
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.1007/978-3-642-14243-7_63
|u Eitel G, Freitas RK, Lintermann A, Meinke M, Schröder W (2010) Numerical Simulation of Nasal Cavity Flow Based on a Lattice-Boltzmann Method. In: Dillmann A, Heller G, Klaas M, Kreplin HP, Nitsche W, Schröder W (eds) New Results in Numerical and Experimental Fluid Mechanics VII, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 112. Springer, Berlin, pp 513–520. https://doi.org/10.1007/978-3-642-14243-7_63
999 C 5 |1 G Eitel-Amor
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.compfluid.2013.01.013
|p 127 -
|t Comput Fluids
|u Eitel-Amor G, Meinke M, Schrȯder W (2013) A lattice-Boltzmann method with hierarchically refined meshes. Comput Fluids 75:127–139. https://doi.org/10.1016/j.compfluid.2013.01.013
|v 75
|y 2013
999 C 5 |1 M Faramarzi
|2 Crossref
|9 -- missing cx lookup --
|a 10.2500/ar.2014.5.0090
|p 70 -
|t Allergy Rhinol (Providence R.I.)
|u Faramarzi M, Baradaranfar M, Abouali O, Atighechi S, Ahmadi G, Farhadi P, Keshavarzian E, Behniafard N, Baradaranfar A (2014) Numerical investigation of the flow field in realistic nasal septal perforation geometry. Allergy Rhinol (Providence R.I.) 5:70–77. https://doi.org/10.2500/ar.2014.5.0090
|v 5
|y 2014
999 C 5 |1 RK Freitas
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.compfluid.2011.02.019
|p 115 -
|t Comput Fluids
|u Freitas RK, Henze A, Meinke M, Schrȯder W (2011) Analysis of Lattice-Boltzmann methods for internal flows. Comput Fluids 47(1):115–121. https://doi.org/10.1016/j.compfluid.2011.02.019
|v 47
|y 2011
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.1007/978-3-030-02465-9_48
|u Göbbert J.H, Kreuzer T, Grosch A, Lintermann A, Riedel M (2018) Enabling Interactive Supercomputing at JSC Lessons Learned: ISC High Performance 2018 International Workshops, Frankfurt/Main, Germany, Revised Selected Papers, pp 669–677. https://doi.org/10.1007/978-3-030-02465-9_48
999 C 5 |1 Z Guo
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevE.75.036704
|p 75 -
|t Phys Rev E
|u Guo Z, Zheng C, Shi B (2007) Thermal lattice boltzmann equation for low mach number flows: Decoupling model. Phys Rev E 036704:75. https://doi.org/10.1103/PhysRevE.75.036704
|v 036704
|y 2007
999 C 5 |1 I Hörschler
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.euromechflu.2005.11.006
|p 471 -
|t Eur J Mech - B/Fluids
|u Hörschler I, Brücker C, Schröder W, Meinke M (2006) Investigation of the impact of the geometry on the nose flow. Eur J Mech - B/Fluids 25:471–490. https://doi.org/10.1016/j.euromechflu.2005.11.006
|v 25
|y 2006
999 C 5 |1 I Hörschler
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.jbiomech.2009.12.008
|p 1081 -
|t J Biomech
|u Hörschler I, Schröder W, Meinke M (2010) On the assumption of steadiness of nasal cavity flow. J Biomech 43(6):1081–1085. https://doi.org/10.1016/j.jbiomech.2009.12.008
|v 43
|y 2010
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.17815/jlsrf-4-121-1
|u Jülich Supercomputing Centre: JURECA: Modular supercomputer at Jülich Supercomputing Centre. J Large-scale Res Facilities 4(A132). https://doi.org/10.17815/jlsrf-4-121-1
999 C 5 |1 SY Kim
|2 Crossref
|9 -- missing cx lookup --
|a 10.2319/092917-656.1
|p 435 -
|t Angle Orthodont
|u Kim SY, Park YC, Lee KJ, Lintermann A, Han SS, Yu HS, Choi YJ (2018) Assessment of changes in the nasal airway after nonsurgical miniscrew-assisted rapid maxillary expansion in young adults. Angle Orthodont 88(4):435–441. https://doi.org/10.2319/092917-656.1
|v 88
|y 2018
999 C 5 |2 Crossref
|u Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. International Conference on Learning Representations
999 C 5 |1 T Lewiner
|2 Crossref
|9 -- missing cx lookup --
|a 10.1080/10867651.2003.10487582
|p 1 -
|t J Graph Tools
|u Lewiner T, Lopes H, Vieira AW, Tavares G (2003) Efficient implementation of marching cubes’ cases with topological guarantees. J Graph Tools 8(2):1–15. https://doi.org/10.1080/10867651.2003.10487582
|v 8
|y 2003
999 C 5 |1 L Li
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.jcp.2012.11.027
|p 366 -
|t J Comput Phys
|u Li L, Mei R, Klausner JF (2013) Boundary conditions for thermal lattice Boltzmann equation method. J Comput Phys 237:366–395. https://doi.org/10.1016/j.jcp.2012.11.027
|v 237
|y 2013
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.1109/ICCV.2017.324
|u Lin T, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: 2017 IEEE International conference on computer vision (ICCV), pp 2999–3007. https://doi.org/10.1109/ICCV.2017.324
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.7712/100016.1885.5067
|u Lintermann A (2016) Efficient parallel geometry distribution for the simulation of complex flows Papadrakakis M, Papadopoulos V, Stefanou G, Plevris V (eds), Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, Athens. https://doi.org/10.7712/100016.1885.5067
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.1007/978-3-030-21217-9_9
|u Lintermann A (2020) Application of Computational Fluid Dynamics Methods to Understand Nasal Cavity Flows. In: Cingi C, Muluk NB (eds) All Around the Nose, chap. 9. 1st edn. https://doi.org/10.1007/978-3-030-21217-9_9. Springer International Publishing, Cham, pp 75–84
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.1007/978-3-642-35680-3_69
|u Lintermann A, Eitel-Amor G, Meinke M, Schröder W (2013) Lattice-Boltzmann Solutions with Local Grid Refinement for Nasal Cavity Flows. In: New Results in Numerical and Experimental Fluid Mechanics VIII. Springer, pp 583–590. https://doi.org/10.1007/978-3-642-35680-3_69
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.1007/978-3-642-22244-3_10
|u Lintermann A, Meinke M, Schrȯder W (2011) Investigations of the Inspiration and Heating Capability of the Human Nasal Cavity Based on a Lattice-Boltzmann Method. In: Proceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows (SIMBIO 2011), Brussels
999 C 5 |1 A Lintermann
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.compbiomed.2013.09.003
|p 1833 -
|t Comput Biol Med
|u Lintermann A, Meinke M, Schröder W (2013) Fluid mechanics based classification of the respiratory efficiency of several nasal cavities. Comput Biol Med 43(11):1833–1852. https://doi.org/10.1016/j.compbiomed.2013.09.003
|v 43
|y 2013
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.1080/10618562.2020.1742328
|u Lintermann A, Meinke M, Schrȯder W (2020) Zonal Flow Solver (ZFS): a highly efficient multi-physics simulation framework. International Journal of Computational Fluid Dynamics, pp 1–28. https://doi.org/10.1080/10618562.2020.1742328
999 C 5 |1 A Lintermann
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.cma.2014.04.009
|p 131 -
|t Comput Methods Appl Mech Eng
|u Lintermann A, Schlimpert S, Grimmen J, Günther C, Meinke M, Schröder W (2014) Massively parallel grid generation on hpc systems. Comput Methods Appl Mech Eng 277:131–153. https://doi.org/10.1016/j.cma.2014.04.009
|v 277
|y 2014
999 C 5 |1 A Lintermann
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.euromechflu.2017.01.008
|p 73 -
|t Eur J Mech - B/Fluids
|u Lintermann A, Schrȯder W (2017) Simulation of aerosol particle deposition in the upper human tracheobronchial tract. Eur J Mech - B/Fluids 63:73–89. https://doi.org/10.1016/j.euromechflu.2017.01.008
|v 63
|y 2017
999 C 5 |1 A Lintermann
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/s10494-017-9876-0
|p 89 -
|t Flow Turbul nce Combust
|u Lintermann A, Schrȯder W (2019) A Hierarchical Numerical Journey Through the Nasal Cavity: from Nose-Like Models to Real Anatomies. Flow Turbul nce Combust 102(1):89–116. https://doi.org/10.1007/s10494-017-9876-0
|v 102
|y 2019
999 C 5 |1 G Litjens
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.media.2017.07.005
|p 60 -
|t Med Image Anal
|u Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sánchez C. I. (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005
|v 42
|y 2017
999 C 5 |1 WE Lorensen
|2 Crossref
|9 -- missing cx lookup --
|a 10.1145/37402.37422
|p 163 -
|t ACM SIGGRAPH Comput Graph
|u Lorensen WE, Cline HE (1987) Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph 21(4):163–169
|v 21
|y 1987
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.1007/978-3-319-46723-8_17
|u Maninis KK, Pont-Tuset J, Arbeláez P, Gool LV (2016) Deep retinal image understanding. In: Ourselin S, Joskowicz J, Sabuncu MR, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer International Publishing, pp 140–148
999 C 5 |1 K Peksis
|2 Crossref
|9 -- missing cx lookup --
|a 10.4193/RHINOL/18.032
|p 1081 -
|t Rhinol Online
|u Peksis K, Unger J, Paulauska S, Emsina A, Blumbergs M, Vogt K, Wernecke KD (2018) Relationships among nasal resistance, age and anthropometric parameters of the nose during growth. Rhinol Online 1:1081–1085. https://doi.org/10.4193/RHINOL/18.032
|v 1
|y 2018
999 C 5 |1 Yh Qian
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/BF01060932
|p 231 -
|t J Sci Comput
|u Qian Yh (1993) Simulating thermohydrodynamics with lattice BGK models. J Sci Comput 8 (3):231–242. https://doi.org/10.1007/BF01060932
|v 8
|y 1993
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.17487/rfc1321
|u Rivest R (1992) The MD5 Message-Digest Algorithm. https://doi.org/10.17487/rfc1321
999 C 5 |2 Crossref
|u Saint-Venant B, Wantzel L (1839) Mėmoire et expėrience sur l’ėcoulement dėterminė par des diffėrences de pressions considėrables. J l’Ėcole Polytechn H.27:85ff
999 C 5 |1 G Scadding
|2 Crossref
|9 -- missing cx lookup --
|a 10.1186/2045-7022-1-2
|p 2 -
|t Clin Transl Allergy
|u Scadding G, Hellings P, Alobid I, Bachert C, Fokkens W, Gerth van Wijk R, Gevaert P, Guilemany J, Kalogjera L, Lund V, Mullol J, Passalacqua G, Toskala E, Drunen C (2011) Diagnostic tools in rhinology eaaci position paper. Clin Transl Allergy 1:2–40. https://doi.org/10.1186/2045-7022-1-2
|v 1
|y 2011
999 C 5 |1 K Vogt
|2 Crossref
|9 -- missing cx lookup --
|a 10.4193/Rhin17.084
|p 133 -
|t Rhinology
|u Vogt K, Bachmann-Harildstad G, Wernecke KD, Garyuk O, Lintermann A, Nechyporenko A, Peters F (2018) The new agreement of the international RIGA consensus conference on nasal airway function tests. Rhinology 56(2):133–143. https://doi.org/10.4193/Rhino17.084
|v 56
|y 2018
999 C 5 |2 Crossref
|u Vogt K, Jalowayski AA (2010) 4 - Phase-Rhinomanometry, basics and practice 2010 rhinology supplement (21)
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.1515/rjr-2016-0017
|u Vogt K, Wernecke KD, Argale M, Kaulina K (2016) Classification of total nasal obstruction in 10,033 cases by 4-phase –rhinomanometry. Roman J Rhinol 6(23). https://doi.org/10.1515/rjr-2016-0017
999 C 5 |1 K Vogt
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/s00405-015-3723-5
|p 1185 -
|t Eur Arch Oto-Rhino-Laryngol
|u Vogt K, Wernecke KD, Behrbohm H, Gubisch W, Argale M (2016) Four-phase rhinomanometry: a multicentric retrospective analysis of 36,563 clinical measurements. Eur Arch Oto-Rhino-Laryngol 273 (5):1185–1198. https://doi.org/10.1007/s00405-015-3723-5
|v 273
|y 2016
999 C 5 |1 A Voulodimos
|2 Crossref
|u Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E (2018) Deep Learning for Computer Vision: A Brief Review. Comput Intell Neurosci 2018:7068349
|y 2018
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.1007/978-3-030-25253-3_80
|u Waldmann M, Lintermann A, Choi YJ, Schröder W (2020) Analysis of the Effects of MARME Treatment on Respiratory Flow Using the Lattice-Boltzmann Method. In: New Results in Numerical and Experimental Fluid Mechanics XII. Springer, Darmstadt, pp 853–863. https://doi.org/10.1007/978-3-030-25253-3_80
999 C 5 |2 Crossref
|u Wilcox DC (1998) Turbulence Modeling for CFD, 2nd editio edn. DCW Industries, La Canada
999 C 5 |2 Crossref
|9 -- missing cx lookup --
|a 10.1109/ICCV.2015.164
|u Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403
999 C 5 |2 Crossref
|u Youlten L (1980) The peak nasal inspiratory flow meter: a newinstrument for the assessment of the response to immunotherapy in seasonal allergic rhinitis. Allergol Immunopathol 8(344)


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21