Home > Publications database > An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology > print |
001 | 904122 | ||
005 | 20250813092821.0 | ||
024 | 7 | _ | |2 doi |a 10.1007/s11517-021-02446-3 |
024 | 7 | _ | |2 ISSN |a 0025-696X |
024 | 7 | _ | |2 ISSN |a 0140-0118 |
024 | 7 | _ | |2 ISSN |a 1741-0444 |
024 | 7 | _ | |2 Handle |a 2128/30603 |
024 | 7 | _ | |2 altmetric |a altmetric:121061792 |
024 | 7 | _ | |2 pmid |a 34950998 |
024 | 7 | _ | |2 WOS |a WOS:000733700900001 |
037 | _ | _ | |a FZJ-2021-05692 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |0 0000-0001-7895-761X |a Waldmann, Moritz |b 0 |e Corresponding author |
245 | _ | _ | |a An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology |
260 | _ | _ | |a Heidelberg |b Springer |c 2022 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1643288110_15719 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a Physics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these methods are commonly developed as isolated solutions which do not consider the whole chain of data processing from initial medical to higher valued data. This manuscript presents a workflow that incorporates the whole data processing pipeline based on a environment. Therefore, medical image data are fully automatically pre-processed by machine learning algorithms. The resulting geometries employed for the simulations on high-performance computing systems reach an accuracy of up to 99.5% compared to manually segmented geometries. Additionally, the user is enabled to upload and visualize 4-phase rhinomanometry data. Subsequent analysis and visualization of the simulation outcome extend the results of standardized diagnostic methods by a physically sound interpretation. Along with a detailed presentation of the methodologies, the capabilities of the workflow are demonstrated by evaluating an exemplary medical case. The pipeline output is compared to 4-phase rhinomanometry data. The comparison underlines the functionality of the pipeline. However, it also illustrates the influence of mucosa swelling on the simulation. |
536 | _ | _ | |0 G:(DE-HGF)POF4-5111 |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |0 G:(DE-HGF)POF4-5112 |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |c POF4-511 |f POF IV |x 1 |
536 | _ | _ | |0 G:(DE-Juel1)jhpc54_20190501 |a Analysis of Respiratory and Cerebrospinal Flows by a Coupled Lattice-Boltzmann Method and Machine Learning Approach (jhpc54_20190501) |c jhpc54_20190501 |f Analysis of Respiratory and Cerebrospinal Flows by a Coupled Lattice-Boltzmann Method and Machine Learning Approach |x 2 |
536 | _ | _ | |0 G:(DE-Juel1)jhpc54_20180501 |a Rhinodiagnost (jhpc54_20180501) |c jhpc54_20180501 |f Rhinodiagnost |x 3 |
542 | _ | _ | |2 Crossref |i 2021-12-23 |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |2 Crossref |i 2021-12-23 |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |0 P:(DE-Juel1)174329 |a Grosch, Alice |b 1 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)177933 |a Witzler, Christian |b 2 |u fzj |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Lehner, Matthias |b 3 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Benda, Odo |b 4 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Koch, Walter |b 5 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Vogt, Klaus |b 6 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Kohn, Christopher |b 7 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Schröder, Wolfgang |b 8 |
700 | 1 | _ | |0 P:(DE-Juel1)168541 |a Göbbert, Jens Henrik |b 9 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)165948 |a Lintermann, Andreas |b 10 |u fzj |
773 | 1 | 8 | |2 Crossref |3 journal-article |a 10.1007/s11517-021-02446-3 |b Springer Science and Business Media LLC |d 2021-12-23 |n 2 |p 365-391 |t Medical & Biological Engineering & Computing |v 60 |x 0140-0118 |y 2021 |
773 | _ | _ | |0 PERI:(DE-600)2052667-2 |a 10.1007/s11517-021-02446-3 |n 2 |p 365-391 |t Medical & biological engineering & computing |v 60 |x 0140-0118 |y 2022 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/904122/files/Waldmann2022_Article_AnEffectiveSimulation-AndMeasu.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:904122 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 0000-0001-7895-761X |a RWTH Aachen |b 0 |k RWTH |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)174329 |a Forschungszentrum Jülich |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)177933 |a Forschungszentrum Jülich |b 2 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-HGF)0 |a RWTH Aachen |b 8 |k RWTH |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)168541 |a Forschungszentrum Jülich |b 9 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)165948 |a Forschungszentrum Jülich |b 10 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF4-511 |1 G:(DE-HGF)POF4-510 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5111 |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |v Enabling Computational- & Data-Intensive Science and Engineering |x 0 |
913 | 1 | _ | |0 G:(DE-HGF)POF4-511 |1 G:(DE-HGF)POF4-510 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5112 |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |v Enabling Computational- & Data-Intensive Science and Engineering |x 1 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |a Creative Commons Attribution CC BY 4.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b MED BIOL ENG COMPUT : 2015 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |
915 | _ | _ | |0 StatID:(DE-HGF)1160 |2 StatID |a DBCoverage |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |1 N Achilles |2 Crossref |u Achilles N, Pasch N, Lintermann A, Schrȯder W, Mȯ,sges R (2013) Computational fluid dynamics: a suitable assessment tool for demonstrating the antiobstructive effect of drugs in the therapy of allergic rhinitis. Acta otorhinolaryngol Itali organ ufficiale della Soc italian otorinolaringol chirurgia cervico-facciale 1:36–42 |y 2013 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.1098/rsif.2014.0880 |u Bates AJ, Doorly DJ, Cetto R, Calmet H, Gambaruto AM, Tolley NS, Houzeaux G, Schroter RC (2014) Dynamics of airflow in a short inhalation. J R Soc Interface 12(102):20140880–20140880. https://doi.org/10.1098/rsif.2014.0880 |
999 | C | 5 | |1 PL Bhatnagar |2 Crossref |9 -- missing cx lookup -- |a 10.1103/PhysRev.94.511 |p 511 - |t Phys Rev |u Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys Rev 94 (3):511–525. https://doi.org/10.1103/PhysRev.94.511 |v 94 |y 1954 |
999 | C | 5 | |1 M Bouzidi |2 Crossref |9 -- missing cx lookup -- |a 10.1063/1.1399290 |p 3452 - |t Phys Fluids |u Bouzidi M, Firdaouss M, Lallemand P (2001) M,omentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluids 13(11):3452–3459. https://doi.org/10.1063/1.1399290 |v 13 |y 2001 |
999 | C | 5 | |1 MA Burgos |2 Crossref |9 -- missing cx lookup -- |a 10.1007/s00405-017-4611-y |p 3121 - |t Eur Arch Otorhinol |u Burgos MA, Sanmiguel-Rojas E, del Pino C, Sevilla-García MA, Esteban-Ortega F (2017) New cfd tools to evaluate nasal airflow. Eur Arch Otorhinol 274(8):3121–3128. https://doi.org/10.1007/s00405-017-4611-y |v 274 |y 2017 |
999 | C | 5 | |1 H Calmet |2 Crossref |9 -- missing cx lookup -- |a 10.1016/j.compbiomed.2015.12.003 |p 166 - |t Comput Biol Med |u Calmet H, Gambaruto AM, Bates AJ, Vȧzquez M, Houzeaux G, Doorly DJ (2016) Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput Biol Med 69:166–180. https://doi.org/10.1016/j.compbiomed.2015.12.003 |v 69 |y 2016 |
999 | C | 5 | |1 H Calmet |2 Crossref |9 -- missing cx lookup -- |a 10.1016/j.jaerosci.2018.11.001 |p 1 - |t J Aerosol Sci |u Calmet H, Yamamoto T, Eguzkitza B, Lehmkuhl O, Olivares E, Kobayashi Y, Tomoda K, Houzeaux G, Vȧzquez M (2019) Numerical evaluation of aerosol exhalation through nose treatment. J Aerosol Sci 128:1–13. https://doi.org/10.1016/j.jaerosci.2018.11.001 |v 128 |y 2019 |
999 | C | 5 | |1 KY Chien |2 Crossref |9 -- missing cx lookup -- |a 10.2514/3.51043 |p 33 - |t AIAA J |u Chien KY (1982) Predictions of channel and Boundary-Layer flows with a Low-Reynolds-Number turbulence model. AIAA J 20(1):33–38. https://doi.org/10.2514/3.51043 |v 20 |y 1982 |
999 | C | 5 | |1 P Clement |2 Crossref |u Clement P (1984) Committee report on standardization of rhinomanometry. Rhinology 22 (3):151–5 |y 1984 |
999 | C | 5 | |1 P Clement |2 Crossref |u Clement P, Gordts F (2005) Consensus report on acoustic rhinometry and rhinomanometry. Rhinology 43(3):169–79 |y 2005 |
999 | C | 5 | |1 I Croy |2 Crossref |9 -- missing cx lookup -- |a 10.1002/lary.20824 |p 826 - |t Laryngoscope |u Croy I, Hummel T, Pade A, Pade J (2010) Quality of life following nasal surgery. Laryngoscope 120(4):826–831. https://doi.org/10.1002/lary.20824 |v 120 |y 2010 |
999 | C | 5 | |1 M Damm |2 Crossref |9 -- missing cx lookup -- |a 10.1097/00005537-200202000-00020 |p 310 - |t Laryngoscope |u Damm M, Quante G, Jungehuelsing M, Stennert E (2002) Impact of functional endoscopic sinus surgery on symptoms and quality of life in chronic rhinosinusitis. Laryngoscope 112(2):310–315. https://doi.org/10.1097/00005537-200202000-00020 |v 112 |y 2002 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.6028/NIST.FIPS.197 |u Dworkin MJ, Barker EB, Nechvatal JR, Foti J, Bassham LE, Roback E, Dray JF Jr (2001) Advanced encryption standard (AES). https://doi.org/10.6028/NIST.FIPS.197 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.1007/978-3-642-14243-7_63 |u Eitel G, Freitas RK, Lintermann A, Meinke M, Schröder W (2010) Numerical Simulation of Nasal Cavity Flow Based on a Lattice-Boltzmann Method. In: Dillmann A, Heller G, Klaas M, Kreplin HP, Nitsche W, Schröder W (eds) New Results in Numerical and Experimental Fluid Mechanics VII, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 112. Springer, Berlin, pp 513–520. https://doi.org/10.1007/978-3-642-14243-7_63 |
999 | C | 5 | |1 G Eitel-Amor |2 Crossref |9 -- missing cx lookup -- |a 10.1016/j.compfluid.2013.01.013 |p 127 - |t Comput Fluids |u Eitel-Amor G, Meinke M, Schrȯder W (2013) A lattice-Boltzmann method with hierarchically refined meshes. Comput Fluids 75:127–139. https://doi.org/10.1016/j.compfluid.2013.01.013 |v 75 |y 2013 |
999 | C | 5 | |1 M Faramarzi |2 Crossref |9 -- missing cx lookup -- |a 10.2500/ar.2014.5.0090 |p 70 - |t Allergy Rhinol (Providence R.I.) |u Faramarzi M, Baradaranfar M, Abouali O, Atighechi S, Ahmadi G, Farhadi P, Keshavarzian E, Behniafard N, Baradaranfar A (2014) Numerical investigation of the flow field in realistic nasal septal perforation geometry. Allergy Rhinol (Providence R.I.) 5:70–77. https://doi.org/10.2500/ar.2014.5.0090 |v 5 |y 2014 |
999 | C | 5 | |1 RK Freitas |2 Crossref |9 -- missing cx lookup -- |a 10.1016/j.compfluid.2011.02.019 |p 115 - |t Comput Fluids |u Freitas RK, Henze A, Meinke M, Schrȯder W (2011) Analysis of Lattice-Boltzmann methods for internal flows. Comput Fluids 47(1):115–121. https://doi.org/10.1016/j.compfluid.2011.02.019 |v 47 |y 2011 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.1007/978-3-030-02465-9_48 |u Göbbert J.H, Kreuzer T, Grosch A, Lintermann A, Riedel M (2018) Enabling Interactive Supercomputing at JSC Lessons Learned: ISC High Performance 2018 International Workshops, Frankfurt/Main, Germany, Revised Selected Papers, pp 669–677. https://doi.org/10.1007/978-3-030-02465-9_48 |
999 | C | 5 | |1 Z Guo |2 Crossref |9 -- missing cx lookup -- |a 10.1103/PhysRevE.75.036704 |p 75 - |t Phys Rev E |u Guo Z, Zheng C, Shi B (2007) Thermal lattice boltzmann equation for low mach number flows: Decoupling model. Phys Rev E 036704:75. https://doi.org/10.1103/PhysRevE.75.036704 |v 036704 |y 2007 |
999 | C | 5 | |1 I Hörschler |2 Crossref |9 -- missing cx lookup -- |a 10.1016/j.euromechflu.2005.11.006 |p 471 - |t Eur J Mech - B/Fluids |u Hörschler I, Brücker C, Schröder W, Meinke M (2006) Investigation of the impact of the geometry on the nose flow. Eur J Mech - B/Fluids 25:471–490. https://doi.org/10.1016/j.euromechflu.2005.11.006 |v 25 |y 2006 |
999 | C | 5 | |1 I Hörschler |2 Crossref |9 -- missing cx lookup -- |a 10.1016/j.jbiomech.2009.12.008 |p 1081 - |t J Biomech |u Hörschler I, Schröder W, Meinke M (2010) On the assumption of steadiness of nasal cavity flow. J Biomech 43(6):1081–1085. https://doi.org/10.1016/j.jbiomech.2009.12.008 |v 43 |y 2010 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.17815/jlsrf-4-121-1 |u Jülich Supercomputing Centre: JURECA: Modular supercomputer at Jülich Supercomputing Centre. J Large-scale Res Facilities 4(A132). https://doi.org/10.17815/jlsrf-4-121-1 |
999 | C | 5 | |1 SY Kim |2 Crossref |9 -- missing cx lookup -- |a 10.2319/092917-656.1 |p 435 - |t Angle Orthodont |u Kim SY, Park YC, Lee KJ, Lintermann A, Han SS, Yu HS, Choi YJ (2018) Assessment of changes in the nasal airway after nonsurgical miniscrew-assisted rapid maxillary expansion in young adults. Angle Orthodont 88(4):435–441. https://doi.org/10.2319/092917-656.1 |v 88 |y 2018 |
999 | C | 5 | |2 Crossref |u Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. International Conference on Learning Representations |
999 | C | 5 | |1 T Lewiner |2 Crossref |9 -- missing cx lookup -- |a 10.1080/10867651.2003.10487582 |p 1 - |t J Graph Tools |u Lewiner T, Lopes H, Vieira AW, Tavares G (2003) Efficient implementation of marching cubes’ cases with topological guarantees. J Graph Tools 8(2):1–15. https://doi.org/10.1080/10867651.2003.10487582 |v 8 |y 2003 |
999 | C | 5 | |1 L Li |2 Crossref |9 -- missing cx lookup -- |a 10.1016/j.jcp.2012.11.027 |p 366 - |t J Comput Phys |u Li L, Mei R, Klausner JF (2013) Boundary conditions for thermal lattice Boltzmann equation method. J Comput Phys 237:366–395. https://doi.org/10.1016/j.jcp.2012.11.027 |v 237 |y 2013 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.1109/ICCV.2017.324 |u Lin T, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: 2017 IEEE International conference on computer vision (ICCV), pp 2999–3007. https://doi.org/10.1109/ICCV.2017.324 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.7712/100016.1885.5067 |u Lintermann A (2016) Efficient parallel geometry distribution for the simulation of complex flows Papadrakakis M, Papadopoulos V, Stefanou G, Plevris V (eds), Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, Athens. https://doi.org/10.7712/100016.1885.5067 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.1007/978-3-030-21217-9_9 |u Lintermann A (2020) Application of Computational Fluid Dynamics Methods to Understand Nasal Cavity Flows. In: Cingi C, Muluk NB (eds) All Around the Nose, chap. 9. 1st edn. https://doi.org/10.1007/978-3-030-21217-9_9. Springer International Publishing, Cham, pp 75–84 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.1007/978-3-642-35680-3_69 |u Lintermann A, Eitel-Amor G, Meinke M, Schröder W (2013) Lattice-Boltzmann Solutions with Local Grid Refinement for Nasal Cavity Flows. In: New Results in Numerical and Experimental Fluid Mechanics VIII. Springer, pp 583–590. https://doi.org/10.1007/978-3-642-35680-3_69 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.1007/978-3-642-22244-3_10 |u Lintermann A, Meinke M, Schrȯder W (2011) Investigations of the Inspiration and Heating Capability of the Human Nasal Cavity Based on a Lattice-Boltzmann Method. In: Proceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows (SIMBIO 2011), Brussels |
999 | C | 5 | |1 A Lintermann |2 Crossref |9 -- missing cx lookup -- |a 10.1016/j.compbiomed.2013.09.003 |p 1833 - |t Comput Biol Med |u Lintermann A, Meinke M, Schröder W (2013) Fluid mechanics based classification of the respiratory efficiency of several nasal cavities. Comput Biol Med 43(11):1833–1852. https://doi.org/10.1016/j.compbiomed.2013.09.003 |v 43 |y 2013 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.1080/10618562.2020.1742328 |u Lintermann A, Meinke M, Schrȯder W (2020) Zonal Flow Solver (ZFS): a highly efficient multi-physics simulation framework. International Journal of Computational Fluid Dynamics, pp 1–28. https://doi.org/10.1080/10618562.2020.1742328 |
999 | C | 5 | |1 A Lintermann |2 Crossref |9 -- missing cx lookup -- |a 10.1016/j.cma.2014.04.009 |p 131 - |t Comput Methods Appl Mech Eng |u Lintermann A, Schlimpert S, Grimmen J, Günther C, Meinke M, Schröder W (2014) Massively parallel grid generation on hpc systems. Comput Methods Appl Mech Eng 277:131–153. https://doi.org/10.1016/j.cma.2014.04.009 |v 277 |y 2014 |
999 | C | 5 | |1 A Lintermann |2 Crossref |9 -- missing cx lookup -- |a 10.1016/j.euromechflu.2017.01.008 |p 73 - |t Eur J Mech - B/Fluids |u Lintermann A, Schrȯder W (2017) Simulation of aerosol particle deposition in the upper human tracheobronchial tract. Eur J Mech - B/Fluids 63:73–89. https://doi.org/10.1016/j.euromechflu.2017.01.008 |v 63 |y 2017 |
999 | C | 5 | |1 A Lintermann |2 Crossref |9 -- missing cx lookup -- |a 10.1007/s10494-017-9876-0 |p 89 - |t Flow Turbul nce Combust |u Lintermann A, Schrȯder W (2019) A Hierarchical Numerical Journey Through the Nasal Cavity: from Nose-Like Models to Real Anatomies. Flow Turbul nce Combust 102(1):89–116. https://doi.org/10.1007/s10494-017-9876-0 |v 102 |y 2019 |
999 | C | 5 | |1 G Litjens |2 Crossref |9 -- missing cx lookup -- |a 10.1016/j.media.2017.07.005 |p 60 - |t Med Image Anal |u Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sánchez C. I. (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005 |v 42 |y 2017 |
999 | C | 5 | |1 WE Lorensen |2 Crossref |9 -- missing cx lookup -- |a 10.1145/37402.37422 |p 163 - |t ACM SIGGRAPH Comput Graph |u Lorensen WE, Cline HE (1987) Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph 21(4):163–169 |v 21 |y 1987 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.1007/978-3-319-46723-8_17 |u Maninis KK, Pont-Tuset J, Arbeláez P, Gool LV (2016) Deep retinal image understanding. In: Ourselin S, Joskowicz J, Sabuncu MR, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer International Publishing, pp 140–148 |
999 | C | 5 | |1 K Peksis |2 Crossref |9 -- missing cx lookup -- |a 10.4193/RHINOL/18.032 |p 1081 - |t Rhinol Online |u Peksis K, Unger J, Paulauska S, Emsina A, Blumbergs M, Vogt K, Wernecke KD (2018) Relationships among nasal resistance, age and anthropometric parameters of the nose during growth. Rhinol Online 1:1081–1085. https://doi.org/10.4193/RHINOL/18.032 |v 1 |y 2018 |
999 | C | 5 | |1 Yh Qian |2 Crossref |9 -- missing cx lookup -- |a 10.1007/BF01060932 |p 231 - |t J Sci Comput |u Qian Yh (1993) Simulating thermohydrodynamics with lattice BGK models. J Sci Comput 8 (3):231–242. https://doi.org/10.1007/BF01060932 |v 8 |y 1993 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.17487/rfc1321 |u Rivest R (1992) The MD5 Message-Digest Algorithm. https://doi.org/10.17487/rfc1321 |
999 | C | 5 | |2 Crossref |u Saint-Venant B, Wantzel L (1839) Mėmoire et expėrience sur l’ėcoulement dėterminė par des diffėrences de pressions considėrables. J l’Ėcole Polytechn H.27:85ff |
999 | C | 5 | |1 G Scadding |2 Crossref |9 -- missing cx lookup -- |a 10.1186/2045-7022-1-2 |p 2 - |t Clin Transl Allergy |u Scadding G, Hellings P, Alobid I, Bachert C, Fokkens W, Gerth van Wijk R, Gevaert P, Guilemany J, Kalogjera L, Lund V, Mullol J, Passalacqua G, Toskala E, Drunen C (2011) Diagnostic tools in rhinology eaaci position paper. Clin Transl Allergy 1:2–40. https://doi.org/10.1186/2045-7022-1-2 |v 1 |y 2011 |
999 | C | 5 | |1 K Vogt |2 Crossref |9 -- missing cx lookup -- |a 10.4193/Rhin17.084 |p 133 - |t Rhinology |u Vogt K, Bachmann-Harildstad G, Wernecke KD, Garyuk O, Lintermann A, Nechyporenko A, Peters F (2018) The new agreement of the international RIGA consensus conference on nasal airway function tests. Rhinology 56(2):133–143. https://doi.org/10.4193/Rhino17.084 |v 56 |y 2018 |
999 | C | 5 | |2 Crossref |u Vogt K, Jalowayski AA (2010) 4 - Phase-Rhinomanometry, basics and practice 2010 rhinology supplement (21) |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.1515/rjr-2016-0017 |u Vogt K, Wernecke KD, Argale M, Kaulina K (2016) Classification of total nasal obstruction in 10,033 cases by 4-phase –rhinomanometry. Roman J Rhinol 6(23). https://doi.org/10.1515/rjr-2016-0017 |
999 | C | 5 | |1 K Vogt |2 Crossref |9 -- missing cx lookup -- |a 10.1007/s00405-015-3723-5 |p 1185 - |t Eur Arch Oto-Rhino-Laryngol |u Vogt K, Wernecke KD, Behrbohm H, Gubisch W, Argale M (2016) Four-phase rhinomanometry: a multicentric retrospective analysis of 36,563 clinical measurements. Eur Arch Oto-Rhino-Laryngol 273 (5):1185–1198. https://doi.org/10.1007/s00405-015-3723-5 |v 273 |y 2016 |
999 | C | 5 | |1 A Voulodimos |2 Crossref |u Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E (2018) Deep Learning for Computer Vision: A Brief Review. Comput Intell Neurosci 2018:7068349 |y 2018 |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.1007/978-3-030-25253-3_80 |u Waldmann M, Lintermann A, Choi YJ, Schröder W (2020) Analysis of the Effects of MARME Treatment on Respiratory Flow Using the Lattice-Boltzmann Method. In: New Results in Numerical and Experimental Fluid Mechanics XII. Springer, Darmstadt, pp 853–863. https://doi.org/10.1007/978-3-030-25253-3_80 |
999 | C | 5 | |2 Crossref |u Wilcox DC (1998) Turbulence Modeling for CFD, 2nd editio edn. DCW Industries, La Canada |
999 | C | 5 | |2 Crossref |9 -- missing cx lookup -- |a 10.1109/ICCV.2015.164 |u Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403 |
999 | C | 5 | |2 Crossref |u Youlten L (1980) The peak nasal inspiratory flow meter: a newinstrument for the assessment of the response to immunotherapy in seasonal allergic rhinitis. Allergol Immunopathol 8(344) |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|