001     904124
005     20240712084606.0
024 7 _ |a 10.3389/fchem.2021.706736
|2 doi
024 7 _ |a 2128/30059
|2 Handle
024 7 _ |a altmetric:116467731
|2 altmetric
024 7 _ |a 34858941
|2 pmid
024 7 _ |a WOS:000725564300001
|2 WOS
037 _ _ |a FZJ-2021-05694
082 _ _ |a 540
100 1 _ |a Finkeldei, Sarah C.
|0 P:(DE-Juel1)142526
|b 0
|e Corresponding author
245 _ _ |a Insight Into Disorder, Stress and Strain of Radiation Damaged Pyrochlores: A Possible Mechanism for the Appearance of Defect Fluorite
260 _ _ |a Lausanne
|c 2021
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641889676_26115
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We have examined the irradiation response of a titanate and zirconate pyrochlore—both of which are well studied in the literature individually—in an attempt to define the appearance of defect fluorite in zirconate pyrochlores. To our knowledge this study is unique in that it attempts to discover the mechanism of formation by a comparison of the different systems exposed to the same conditions and then examined via a range of techniques that cover a wide length scale. The conditions of approximately 1 displacement per atom via He2+ ions were used to simulate long term waste storage conditions as outlined by previous results from Ewing in a large enough sample volume to allow for neutron diffraction, as not attempted previously. The titanate sample, used as a baseline comparison since it readily becomes amorphous under these conditions behaved as expected. In contrast, the zirconate sample accumulates tensile stress in the absence of detectable strain. We propose this is analogous to the lanthanide zirconate pyrochlores examined by Simeone et al. where they reported the appearance of defect fluorite diffraction patterns due to a reduction in grain size. Radiation damage and stress results in the grains breaking into even smaller crystallites, thus creating even smaller coherent diffraction domains. An (ErNd)2(ZrTi)2O7 pyrochlore was synthesized to examine which mechanism might dominate, amorphization or stress/strain build up. Although strain was detected in the pristine sample via Synchrotron X-ray diffraction it was not of sufficient quality to perform a full analysis on.
536 _ _ |a 1411 - Nuclear Waste Disposal (POF4-141)
|0 G:(DE-HGF)POF4-1411
|c POF4-141
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Chang, Shirley
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ionescu, Mihail
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Oldfield, Daniel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Davis, Joel
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lumpkin, Gregory R.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Simeone, David
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Avdeev, Max
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Brandt, Felix
|0 P:(DE-Juel1)144040
|b 8
|u fzj
700 1 _ |a Bosbach, Dirk
|0 P:(DE-Juel1)130324
|b 9
|u fzj
700 1 _ |a Klinkenberg, Martina
|0 P:(DE-Juel1)130364
|b 10
|u fzj
700 1 _ |a Thorogood, Gordon J.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.3389/fchem.2021.706736
|g Vol. 9, p. 706736
|0 PERI:(DE-600)2711776-5
|p 706736
|t Frontiers in Chemistry
|v 9
|y 2021
|x 2296-2646
856 4 _ |u https://juser.fz-juelich.de/record/904124/files/fchem-09-706736.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904124
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)144040
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130324
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130364
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Nukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)
|1 G:(DE-HGF)POF4-140
|0 G:(DE-HGF)POF4-141
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Nukleare Entsorgung
|9 G:(DE-HGF)POF4-1411
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT CHEM : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-02-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21