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Abstract 

Thermodynamic mixing properties of AxB1-xO2-0.5xV0.5x, fluorite-type solid solutions (B = Zr, A = {Nd-Yb, Y}, V = oxygen 

vacancy) are modelled as functions of four parameters, H1, H2, H3 and H4, which correspond to the enthalpy effects of 

the reactions 6A + 8B = 7A + 7B (1), 6A + 8B = 8A + 6B (2), 6B + 8B = 7B + 7B (3)  and 6A + 8A = 7A + 7A (4), involving six 

cation species, 6A, 7A, 8A, 6B, 7B and 8B. The model predicts that the disordered configuration containing all cation species 

evolves with the decreasing temperature such that 6-fold coordinated cations tend to vanish within 0 ≤ x ≤ 1/2 domain, while 

8-fold coordinated cations become extinct within 1/2 ≤ x ≤ 1 domain. The further evolution within the intervals of 0 ≤ x ≤ 1/3, 

1/3 ≤ x ≤ 1/2, 1/2 ≤ x ≤ 2/3 and 2/3 ≤ x ≤ 1 favours the extinction of 7A, 8B, 7B and 6A cation species, respectively. With the 

further decrease in the temperature 6-fold B and 8-fold A cations reappear within the domains of 1/3 ≤ x ≤ 1/2 and 1/2 ≤ x ≤ 

2/3 via the reaction 7A + 7B = 8A + 6B. The configurational entropy reduces along with these transformations. The model fits 

structural and calorimetric data on Zr-based AxB1-xO2-0.5xV0.5x systems and provides hints to understanding of ionic conductivity 

and radiation susceptibility data. 
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1. Introduction 

 

Order/disorder effects play a very important role in determining structure/property relationship of zirconia 

based yttria and lanthanide doped fluorite- and pyrochlore-type ceramics. Particularly, the ionic 

conductivity [1,2] and the radiation resistance [3-5] of pyrochlore-type A2Zr2O7 compounds correlate with 

the propensity of these materials to undergo order/disorder pyrochlore/fluorite phase transformation [6,7]. 

In Part I [8] experimental data on nonstoichiometric AxZr1-xO2-0.5x systems systems, A = {Ln, Y}, were 

reviewed emphasising wending points in the structure/property relationships occurring at x ~ 1/3 and x ~ 
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1/2. The breaks in the structure/property dependencies were attributed to changes in schemes of short- and 

long-range order. Following previous theoretical studies [9-12] a proposition was made [8] that short-

range order in Zr-based defect fluorite reveals itself in two main aspects, first, as the electrostatically 

driven avoidance of vacancies and, second, as the strain driven tendency of association of vacancies to 

cations of the smaller size. As shown in Part I [8], strict following these two tendencies gives rise to six 

models of SRO. The three models relevant for the domain of 0 ≤ x ≤ 0.5, namely, DF1 (0 ≤ x ≤ 1/3), DF2 

(1/3 ≤ x ≤ 1/2) and PY (1/3 ≤ x ≤ 1/2) were used to fit available a vs. x data, allowing for a successful 

description of vending points at x ~ 1/3 and x ~ 1/2.  

The successful fit to a vs. x data with models of SRO gives an additional indication to the importance 

of SRO for the understanding of structure/property and phase stability relations in fluorite-type ceramics. 

This points out to the necessity of developing of a thermodynamic description of phase transformations in 

defect fluorite solid solutions, which includes the concept of SRO.  Although the temperature of the 

pyrochlore/fluorite transition can be accurately estimated with a model that ignores SRO [13], there is an 

indication that the successful prediction of the transition temperature is a consequence of cancellation of 

errors in enthalpy and entropy terms. Indeed, in the study of Jiang et al. [13] the temperatures were 

calculated by combining differences in total energies between quasi-random structures of defect fluorite 

and ordered pyrochlore with the ideal configurational entropy of disorder in an A2B2O7 compound. 

Notably, the latter differences exceeded the experimentally measured [14, 15] enthalpies of disorder in 

Gd2Hf2O7 and Eu2Zr2O7 in 2-3 times, suggesting that the ideal mixing model exaggerates the real entropy 

effect to the similar extent, and that the associated effects of SRO on the thermodynamic functions are 

huge.  

Indeed, the large reduction in the entropy effect could be understood only under the assumption of a 

significant SRO remaining in defect fluorite above the transition temperature. A number of recent studies 

considered a weberite-type model of defect fluorite [11, 16, 17]. It was shown that the weberite model 

gives a good fit to pair distribution functions computed from total neutron scattering data on several defect 
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fluorite compounds [16]. Weberite is a polymorph of A2B2O7, which can be derived from defect fluorite 

by ordering of vacancies and by allowing the mixing between A and B cations to occur only over a half 

of the total cation sites. Consequently, the configurational entropy of the weberite model is much smaller 

than this of a perfectly disordered defect fluorite. A series of quasi-random weberite structures with AxB1-

xO2-0.5x composition were developed to model the effects of non-stoichiometry on the pyrochlore/fluorite 

transition in ZrO2 - NdO1.5 system [18].  The same study [18] noted, however, that the configurational 

entropy of weberite, particularly at the composition of stoichiometric pyrochlore, is too small to fit the 

measured enthalpy effect of disorder [15] in Eu2Zr2O7, implying that defect fluorite should include more 

disorder than this allowed by the weberite structure.  

In Part I [8] we developed phenomenological models of defect fluorite solid solutions which assumed 

different types of SRO to be stable in different composition domains. The models were shown to be 

consistent with a vs. x data on a number of AxZr1-xO2-0.5x systems, however, the role of these models within 

a temperature-dependent hierarchy of ordering states has not been investigated in detail.  The aim of the 

present study is to add the temperature into the play. This is achieved via the development of a general 

statistical-thermodynamic model in which different types of SRO occur as consequences of the free energy 

minimization. While developing the general model the models DF1, DF2 and PY [8] (0 ≤ x ≤ 0.5), as well 

as their mirror models DF1M, DF2M and PYM (0.5 ≤ x ≤ 1), are re-derived here again starting from less 

ordered states. The set of models considered here is larger due to the need of describing increasing disorder 

at higher temperatures. 

The model is composed of enthalpy and entropy terms. The total configurational entropy is combined 

of several limiting models between which gradual transitions are set with the aid of variational parameters. 

The enthalpy of mixing is set proportional to progresses of reactions between cation species through which 

mixed (ordered and disordered) states develop from the state of a mechanical mixture of the end-members 

BO2 and AO1.5. The entropy and enthalpy equations are combined to get a non-equilibrium Gibbs free 

energy equation, which is minimized at a given temperature with respect to the variational parameters. 
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The study provides a consistent justification of the models introduced in [8], revealing a more detailed 

relationship between SRO types occurring in specific temperature and composition intervals. 

2.  Models and Methods 

2.1. Enthalpy of mixing 

In Part I [8] wending points in structure/property relations were linked to changes in SRO/LRO schemes 

and, ultimately, to changes in cation coordination numbers. Here we show that changes in thermodynamic 

properties can be also correlated with changes in coordination numbers of cations. Assuming that both 

endmembers BO2 and AO1.5 are built of 8B and 6A, respectively, and that the spectrum of coordination 

numbers is limited to the set {6, 7, 8}, the enthalpy of mixing can be primarily attributed to the enthalpy 

effects, 𝛥𝐻1 and 𝛥𝐻2, of the reactions 

 

6A + 8B = 7A + 7B,                    (1) 

6A + 8B = 8A + 6B.                    (2) 

 

The reaction (2) stabilizes pyrochlore relative to the endmembers. The reaction (1) stabilizes a short-range 

ordered structure composed of 7-fold coordinated cations, which in Part I [8] was introduced as 

Stoichiometric Fluorite, the endmember of DF2 and DF2M models. The following reverse 

disproportionation reactions are also thought to occur within the solid solution affecting its enthalpy 

 

8B + 6B  = 7B + 7B,                    (3) 

8A + 6A = 7A + 7A.                    (4) 

 

The reaction (3) is expected to have a negative enthalpy effect for ZrO2 as the coordination of 7 is 

consistent with the structure of the ground state baddeleyite. The enthalpy change due to reaction (4) is 
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more difficult to guess, as it apparently varies with the type (size) of A cation. However, one notes that 

the reactions (1), (2), (3) and (4) are not independent being linked through the following relationship  

𝛥𝐻3 + 𝛥𝐻4 = 2𝛥𝐻1 − 𝛥𝐻2.                  (5) 

The latter relationship conveniently determines the sign and value of the enthalpy effect of reaction (4), 

when the values of the other terms are defined. As the cation species featuring at the right sides of these 

reactions occur only due to the solid solution formation, being absent in the endmembers, the enthalpy of 

mixing relative to the endmembers BO2 and AO1.5 could be defined proportionally to progresses  of 

reactions (1-4) measured in terms of cation fractions that occur as the reaction products 

 

𝛥𝐻mix = ([ A
7 ] + [ B7 ])𝛥𝐻1 + ([ A

8 ] + [ B6 ])𝛥𝐻2 + 2[ B
7 ]𝛥𝐻3 + 2[ A

7 ]𝛥𝐻4.       (6) 

 

We note that Eqn. 6 does not distinguish cationic sublattices, and, thus, does not distinguish SRO from 

LRO. In the context of the present study this drawback is considered to be of a minor importance, as the 

study maintains that the main thermodynamic distinction of phases appearing in AxZr1-xO2-0.5x systems is 

due to their different composition in terms of the cationic species, namely 6A, 7A, 8A, 6B, 7B and 8B. 

Differences in the thermodynamic stability occurring due distinctions between SRO and LRO of a given 

type are assumed to be small. For example, the enthalpy effects due to SRO and delta-phase-type LRO in 

YxZr1-xO2-0.5x system measured at x ~ 4/7 appear to be indistinguishable within the uncertainty of solution 

calorimetry data [19]. On the other hand, conveniently, the deficiency of the model in distinguishing SRO 

from LRO allows us using LRO concepts to emulate SRO effects. 

Certain combinations of reactions (1), (2), (3) and (4) are also important for the understanding of 

stability of certain ordering schemes. In systems with stable pyrochlore the value of 𝛥𝐻2 is more negative 

than the value of 𝛥𝐻1. Thus, one expects that the reaction 

7A +7B = 8A + 6B,                    (7) 
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which represents the difference of reactions (2) and (1), is also characterized by a negative enthalpy effect 

in such systems. Combining (1) with (4) and (1) with (3) one obtains the reactions 

7A + 8B = 8A + 7B,                    (8) 

6A + 7B = 7A + 6B,                    (9) 

 

which are similarly expected to have negative enthalpy effects, noting that the sense of these reactions is 

consistent with the strain-driven association of a vacancy to the smaller cation B.  The reactions (8) and 

(9) are particularly relevant for the domains of 0 ≤ x ≤ 0.5 and 0.5 ≤ x ≤ 1, where the average cation 

coordination numbers vary within the intervals of {7 - 8} and {6 - 7}, respectively.   

 

2.2. Entropy of mixing 

The progress of reactions (1-4) at a given temperature is counterbalanced by the entropy factor. Thus the 

thermodynamic evaluation requires knowledge of the entropy as a function of cation species fractions. A 

proper treatment of the effect of SRO onto the configurational entropy of a solid solution requires using 

sophisticated techniques such as the cluster variation method [21, 22] or the thermodynamic integration 

coupled with the Monte Carlo simulations [23]. An approximate treatment of SRO [24] assumes that 

effects of local restrictions on the entropy can be emulated by reducing the space available for cation or 

anion mixing, i.e. by limiting the mixing of chemically different particles to a subset of the total number 

of available sites. In this approach SRO is emulated as LRO.  Presently, the approach [24] is adopted and 

is developed as follows. Instead of a unique model emulating a certain SRO restriction over the whole 

composition range, we consider several models differing in the type of SRO applicable to specific 

composition domains. Then we interpolate between these limiting models with the aid of variational 

parameters. The values of the variational parameters are then determined via the Gibbs free energy 

minimization.  
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2.2.1. Model DF(6,7,8) for disordered defect fluorite.  

The first step in the development of the general model is the characterization of the high-temperature 

distribution, which is not yet affected by reactions (1-4). The ideal mixing model is not a good solution 

for the disordered phase. Developing such a model would require considering the whole range of 

coordination numbers (0 ≤ K ≤ 8) and the necessity of describing the order/disorder effect within the AO1.5 

endmember. These complications can be avoided by postulating a fairly high degree of vacancy-vacancy 

avoidance governing the high-temperature distribution. The vacancy disordering in Y2O3 occurs at ~2500 

K [20]. Thus for practical applications, it is possible to consider an endmember that is characterized by an 

ordered distribution of vacancies. For this reason we consider a hypothetical AO1.5 end-member with 

A2A2O6VV pyrochlore structure. In this structure vacancies occupy 8b and 8a sublattices. Together these 

sublattices build a BCC (body-centred cubic) sublattice within the anion lattice of A(O,V)2 fluorite. By 

inserting of extra oxygen anions into this sublattice and by substituting of an equivalent amount of A 

cations with B cations one can gradually transform the AO1.5 pyrochlore into the cubic fluorite-type BO2. 

Note, that such a model implies a high degree of vacancy-vacancy avoidance. The nearest-neighbour 

distance in BCC corresponds to 3NN distance of the anionic lattice of fluorite, thus, when extra oxygen 

anions are introduced by substituting vacancies within the BCC sublattice, no V-V contacts at shorter than 

3NN distances can possibly occur, and the coordination number of any cation remains within the interval 

{6-8}. This model is further referred to as DF(6,7,8).  

The restriction for the vacancies to be located within the BCC sublattice greatly reduces the 

configurational entropy of O/V in DF(6,7,8) fluorite. The mixing occurs only over a quarter of the total 

anion sites. The concentration of vacancies within the BCC sublattice, x, is higher than the average 

vacancy concentration of 0.25x by a factor of 4, while the total number of sites over which the anions can 

mix decreases by a factor of 4. Therefore, the configurational entropy of anions (per four moles of cations, 

eight moles of anions) is written as 
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𝑆O/V  (DF(6,7,8)) = −2𝑅(𝑥ln𝑥 + (1 − 𝑥)ln(1 − 𝑥)).            (10) 

 

 

Fig. 1. Configurational entropy of the models DF(6,7,8), DF(7,8) and DF(6,7). The dashed curves show the entropy of anions 

within the imaginary BCC sublattice. The case t = 0 corresponds to DF(6,7,8), the case  t = 1 corresponds DF(7,8) or DF(6,7) 

depending on the composition. The entropy of cations is added on top of the entropy of anions. The dotted line is the ideal 

mixing.  

 

The cation fractions in DF(6,7,8) can be also worked out from the BCC model. Noting that any cation 

is surrounded (besides the other six 48f sites) by two anion sites belonging to the BCC sublattice, and that 

the concentration of vacancies in any BCC site is x, the fractions of 6-, 7- and 8-fold cations are 

proportional to the probabilities to find two, one or zero vacancies within the two BCC sites that are 

adjacent to a cation. These fractions are given in Table 1. Using these fractions the configurational entropy 

of cations (per four mole of cations) can be computed with the equation  

𝑆A/B (DF(6,7,8)) = −4𝑅

(

 
 
 
[ A8 ]ln

[ A8 ]

[ A8 ]+[ B8 ]
+ [ B8 ] ln

[ B8 ]

[ A8 ]+[ B8 ]

+[ A7 ]ln
[ A7 ]

[ A7 ]+[ B7 ]
+ [ B7 ] ln

[ B7 ]

[ A7 ]+[ B7 ]

+[ A6 ]ln
[ A6 ]

[ A6 ]+[ B6 ]
+ [ B6 ] ln

[ B6 ]

[ A6 ]+[ B6 ])

 
 
 
.          (11) 
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Eqn. 11 assumes that the mixing could occur only between A and B cations which have the same 

coordination numbers. E.g. the mixing between 8A and 7B is not allowed because the swapping between 

these cations would cause a change in the cation species fractions and this would violate the model’s 

constraint. The combined effect of Eqns. 10 and 11 is shown as the upper solid curve in Fig. 1. This 

function achieves the maximum at x = 0.5.  

 With the decrease in the temperature, progresses of reactions (1-4) are expected to affect the entropy. 

The entropy models are developed below for the domain of 0 ≤ x ≤ 0.5. The models for the interval of 0.5 

≤ x ≤ 1 are developed in the Supplementary Information File. 

 

Table 1  

Cation species fractions in DF(6,7,8) model (0 ≤ x ≤ 1) 

8A x(1 – x)2 

7A 2x2(1 – x) 

6A x3 

8B (1 – x)3 

7B 2(1 – x) 2x 

6B (1 – x) x2 

 

2.2.1. Transition from DF(6,7,8) to DF(7,8) (0 ≤ x ≤ 0.5).  

Within the 0 ≤ x ≤ 0.5 domain the completion of reaction (1) leads to vanishing of 6A cations. This can be 

accomplished either via a migration of vacancies from A to B cations, or via a reduction of the total 

fraction of 6-fold cations. The second option is a more likely solution at high temperatures due to the 

entropy argument, as will be explained below. Model DF(7,8) corresponds to the limiting case of the 

simultaneous vanishing of 6B and 6A cations. Such a change in the spectrum of cation species (from the 

DF(6,7,8) state) could be viewed as a progressive increase in the degree of VV avoidance from the level 

of third neighbours (as in the BCC model) to the level of fourth neighbours. This extension of the 



10 
 

avoidance rule implies vanishing of 6-fold coordination of cations. An anion distribution with the 

avoidance of 3NN V-V pairs can be emulated by requesting vacancies to concentrate within a simple cubic 

sublattice, , of the original anion lattice with the lattice parameter (a* = 2a). The nearest neighbour 

distance within  is the 4NN distance in the original anionic lattice of fluorite. As the  sublattice is also 

a sublattice of BCC, the transition from DF(6,7,8) to DF(7,8) can be described as the ordering of vacancies 

into the -subset of the BCC sublattice. A gradual transition from DF(6,7,8) to DF(7,8) can be described 

with a help of a variational parameter t, 0 ≤ t ≤ 1, defining the concentration of vacancies in the  subset 

to be 𝑃𝛼 = 𝑥(1 + 𝑡). The concentration of vacancies in the other simple cubic subset of BCC, , is then 

𝑃𝛽 = 𝑥(1 − 𝑡). The change in the entropy of the O/V distribution along the path from DF(6,7,8) to DF(7,8) 

is described with the function 

 

𝑆O/V  (DF(6,7,8) − DF(7,8)) = −𝑅(𝑃𝛼ln𝑃𝛼 + (1 − 𝑃𝛼)ln(1 − 𝑃𝛼) + 𝑃𝛽ln𝑃𝛽 + (1 − 𝑃𝛽)ln(1 − 𝑃𝛽)) , 

   (12) 

 

which is plotted in Fig. 1 in the disordered (t = 0) and ordered (t = 1) limits as dashed lines. 

A progressive increase in the concentration of vacancies in the  sublattice implies a gradual change 

in cation fractions. These fractions could be computed by noting that each cation is surrounded by one  

site and one  site.  The fractions of 6-, 7- and 8-fold cations are then proportional to the probabilities of 

finding two, one and zero vacancies within these two sites (Table 2).  

 

Table 2  

Cation species fractions along the transition from DF(6,7,8) to DF(7,8) (0 ≤ x ≤ 0.5) 

8A x(1 – P))(1 – P) 

7A x(P (1 – P) + P (1 – P)) 



11 
 

6A xPP 

8B (1 – x)(1 – P))(1 – P) 

7B (1 – x) (P (1 – P) + P (1 – P)) 

6B (1 – x)PP 

Note: P= x(1 + t), P= x(1 – t), 0 ≤ t ≤ 1. 

The entropy of cations can be computed with Eqn. 11 using the cation fractions from Table 2.  This 

function is added to the entropy of anions in Fig. 1. Notably, despite the change in the spectrum of cation 

coordination numbers the cation entropy remains constant along the transition from DF(6,7,8) to DF(7,8). 

This is because a decrease in the contribution from 6-fold cations automatically implies an equivalent 

increase in the contributions from 7- and 8-fold cations. This circumstance explains the entropy advantage 

of DF(7,8) type ordering as a response to reaction (1). 

 

2.2.2. Transition from DF(7,8) to DF1 (0 ≤ x ≤ 1/3).  

The further ordering within the 0 ≤ x ≤ 0.5 interval can be attributed to the reaction (8). Depending on the 

composition, this reaction can lead to a complete vanishing of either 7A or 8B cations. These variants lead 

to the models DF1 (0 ≤ x ≤ 1/3) and DF2 (1/3 ≤ x ≤ 1/2), respectively, which were discussed in detail in 

[8]. The sense of reaction (8) is the redistribution of a vacancy between A and B cations. Thus, the ordering 

effect can be understood within the concept of a conditional probability, i.e. the probability of a cation, 

which is known with certainty to be either A- or B-type, to have a given coordination number. In the case 

of DF(7,8) the matrix of conditional probabilities has four elements, namely  𝑝A
7 ,  𝑝A

8 ,  𝑝B
7,  𝑝B

8. Particularly, 

the subset 𝑝A
7 ,  𝑝A

8 determines the probabilities for a cation A to be found in 7- and 8-fold coordination, 

respectively. The conditional probabilities satisfy the relationships of the type 𝑥𝑝A
7 = [ A7 ] and 

(1 − 𝑥)𝑝B
7 = [ B7 ]. From cation fractions of DF(7,8) model (Table 2, t = 1) one obtains  𝑝A

7 = 𝑝B
7 = 2𝑥 

and 𝑝A
8 = 𝑝B

8 = 1 − 2𝑥. The equal conditional probabilities for A and B cations mean that in DF(7,8) there 

is no preference for cations A and B to have a specific coordination number. Destroying this equality 
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allows the description of the vacancy/cation association. A continuous transition from DF(7,8) to DF1 is 

defined here with the aid of the variational parameter r1 , 0 ≤ r1 ≤ 1, requiring 𝑝A
7 = 2𝑥𝑟1.  The cases of r1 

= 1 and r1 = 0 correspond to the limits DF(7,8) and DF1, respectively. The other conditional probabilities 

are computed from the relationship that links cation fractions to the average coordination number 

 

∑ 𝐾8
𝐾=7 ([ A] +𝐾 [ B])𝐾 = 7𝑥𝑝A

7 + 8𝑥𝑝A
8 + 7(1 − 𝑥)𝑝B

7 + 8(1 − 𝑥)𝑝B
8 = 8 − 2𝑥 ,     (13) 

 

which has been introduced in [8]. The cation fractions as functions of x and r are given in Table 3. The 

configurational entropy of cations is then computed with Eqn. 11. Note, that the transition from DF(7,8) 

to DF1 implies a dramatic decrease in the cation entropy particularly at x = 1/3 (Fig. 2). Effectively, at x 

= 1/3 the solid solution is composed exclusively of 7B and 8A cations, while their contribution to the 

entropy of mixing is zero because of the difference in the coordination numbers. 

 

Table 3  

Cation species fractions along the transition from DF(7,8) to DF1 (0 ≤ x ≤ 1/3) 

8A x(1 – 2xr1) 

7A 2x2r1 

6A 0 

8B 1 – 3x + 2x2r1 

7B 2x(1 – xr1) 

6B 0 

Note, 0 ≤ r1 ≤ 1. The transition from DF(7,8) to DF1 does not imply any additional constraint onto the anion/vacancy 

distribution, because the average cation coordination does not change remaining within the interval of {7-8} in the both models. 

The entropy of anions in DF1 is the same as in DF(7,8) model. 

 

2.2.3. Transition from DF(7,8) to DF2 (1/3 ≤ x ≤ 1/2). 
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When 1/3 ≤ x ≤ 1/2 the completion of reaction (8) leads to vanishing of the fraction of 8B. A gradual 

transition from DF(7,8) to DF2 is defined, requesting the conditional probability 𝑝B
8 to vary as 𝑝B

8 =

(1 − 2𝑥)𝑟2 , (0 ≤ r2 ≤ 1), The case of r2 = 0 then corresponds to the complete extinction of 8B, which is 

the main constraint of DF2 [8]. The other conditional probabilities are computed from Eqn. 13. The cation 

fractions are given in Table 4. 

Table 4.  

Cation species fractions along the transition from DF(7,8) to DF2 (1/3 ≤ x ≤ 1/2) 

8A (1 – 2x)(1 – (1 – x)r2) 

7A 3x – 1 – (1 – 2x)(1 – x)r2 

6A 0 

8B (1 – x)(1 – 2x)r2 

7B (1 – x)(1 – (1 – 2x)r2) 

6B 0 

Note, 0 ≤ r2 ≤ 1. 

The configurational entropy of cations is computed with Eqn. 11, while the entropy of anions is the same 

as in DF(7,8) model. Note, that at x = 1/3 and r2 = 0 the DF2 model predicts zero entropy of mixing of 

cations. Over the interval of 1/3 ≤ x ≤ 1/2 the entropy of cations increases rapidly due to the increase in 

the fraction of 7A allowing for the mixing between 7A and 7B (Fig. 2). In the limit of r2 = 0 (DF2) the cation 

fractions are consistent with the derivation made in [8]. 
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Fig. 2. Configurational entropies of all models used to simulate defect fluorite and pyrochlore phases. The dashed lines show 

isopleths of equal variational parameters q and q’ in the DF2/PY and DF2M/PYM transition models. The entropy values are 

per four moles of cations. 

 

2.2.4. Transition from DF2 to PY (1/3 ≤ x ≤ 1/2).   

In systems with 𝛥𝐻2 < 𝛥𝐻1 the cation and anion distributions can further evolve due to the progress of 

reaction (7), i.e. the difference of reactions (2) and (1). Over the interval 1/3 ≤ x ≤ 1/2 the completion of 

reaction (7) implies [7A] = 0. The reaction progress can be defined with the help of the variational 

parameter q such that [7A] = (3x – 1)(1 – q). The case of q = 1 corresponds to the PY model, while the 

case of q = 0 corresponds to DF2 model. The fractions of the other cations are worked out noting that a 

decrease in [7A] must be consistent with an equivalent decrease in [7B], while the fractions 8A and 6B are 

increased by the same amounts. The cation fractions are given in Table 5. 

 

Table 5  

Cation species fractions along the transition from DF2 to PY (1/3 ≤ x ≤ 1/2) 

8A 1 – 2x + (3x – 1)q 

7A (3x – 1)(1 – q) 
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6A 0 

8B 0 

7B 1 – x – (3x – 1) q 

6B (3x – 1)q 

Note, 0 ≤  q ≤ 1. 

 

The DF2-PY transition causes the reappearance of the 6-fold coordination. This implies a change in 

the ordering scheme of vacancies. DF2 model assumes the avoidance of V-V contacts at the first, second 

and third-neighbour distances. Such a distribution is emulated here by requiring vacancies to occupy the 

simple cubic sublattice  of the BCC sublattice. The SRO of PY-type implies reordering of vacancies into 

a different subset of BCC, which is assumed here to coincide with the 8b sublattice of pyrochlore. Note 

that the BCC sublattice could be split either into two simple cubic sublattices  and , or into 8a and 8b 

sublattices of the pyrochlore structure, where each of these sublattices contain 1/8 of the total anion sites. 

As all these sublattices are of equal size, a redistribution of vacancies from  sublattice into 8b sublattice 

should not cause a significant change in the entropy of anions. Thus we associate no additional effect of 

anion ordering with the DF2/PY transition. The change in the entropy of cations is, however, significant. 

The entropy change along the DF2/PY transition can be computed with Eqn. 11 using the cation fractions 

from Table 5. Fig. 2 shows that an increase in the value of q causes a rapid decrease in the entropy of 

cations particularly at x = 0.5. This is a consequence of the dramatic change in the spectrum of cation 

coordination numbers. The 6B and 8A cations, which occur as the products of reaction (7), cannot mix with 

each other.  

 

2.2.5. Long-range order in pyrochlore.  

The entropy model of DF2/PY transition can be developed further by taking into account long-range 

ordering in pyrochlore. LRO implies a not equal distribution of cations and anions over sublattices. In 

pyrochlore vacancies reside within the 8b sublattice that contains 1/8 of the total anion sites. Eqn. 12 (t = 
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1) obviously suits to describe this ordered distribution, if the indices  and  are used to denote 8b and 8a 

sublattices. Here we make an assumption that both SRO and LRO of anions of PY-type can be modelled 

with the same Eqn. 12 constrained by t = 1. The transition from pyrochlore-type distribution to DF2-type 

distribution can be understood as a gradual shift of vacancies from 8b to  sublattice.  As both sublattices 

contain equal amount (1/8-th) of anion sites, this transition implies no (little) change in the entropy of 

anions. LRO of pyrochlore type means that the cation distribution is split over two sublattices, which are 

denoted here as  and . An unequal partitioning of cations over these sublattices is modelled with the aid 

of an additional parameter Q, 0 ≤ Q ≤ 1 as shown in Table 6. The entropy of each sublattice can be still 

computed with Eqn. 11 rescaled to one half of available sites. The total entropy per four moles of cations 

is counted as the sum of the entropies of the sublattices. At x = 0.5 and Q = 1 the entropy of cations is 

zero. In the case of Q = 1 and q = 0 the sublattices are occupied by 7A and 7B, respectively, while in the 

case of Q = 1 and q = 1 the sublattices are occupied by 8A and 6B, respectively. Both these distributions 

correspond to zero entropy. The first case corresponds to the ordered stoichiometric fluorite (see 

Supporting Information in [8] for the description of the ordering scheme), the second one corresponds to 

the ordered stoichiometric pyrochlore. The problem of the present enthalpy model is that it gives no 

advantage to LRO over SRO. Thus, the states with Q > 0 cannot be made stable. To make the model 

formally consistent with crystallographic data, we artificially stabilise the long-range distribution by 

requiring Q = q. In effect, the minimization with respect to q, 0 ≤ q ≤ 1, then formally describes a transition 

from short-range ordered DF2-like states to long-range ordered pyrochlore-like states.  

 

Table 6 

Cation species fractions along the transition from DF2 to PYLRO (1/3 ≤ x ≤ 1/2) 

 8A 7A 7B 6B 

 1 – 2x + w(1–Q)q w(1+Q)(1–q) 1 – x – w + w (1–Q)(1–q) w(1+Q)q 

 1 – 2x + w(1+Q)q w(1–Q)(1–q) 1 – x – w + w (1+Q)(1–q) w(1–Q)q 

Note: w = 3x – 1, 0 ≤ q ≤ 1, Q = q. 
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2.3. Gibbs free energy of mixing 

The entropy models described above together with analogous models for the interval of 0.5 ≤ x ≤ 1 (see 

Supplementary Information File) are combined with Eqn. 6 to define the Gibbs free energies of four 

phases. The first phase, P1, (0 ≤ x ≤ 1)  is characterized by the highest entropy uniting the models 

DF(6,7,8), DF(7,8) and DF(6,7) and all states of intermediate degree of order defined with the parameters 

t and t’ (0 ≤ t, t’ ≤ 1), where t and t’ are relevant for 0 ≤ x ≤ 0.5 and 0.5 ≤ x ≤ 1 intervals, respectively. The 

second phase, P2, (0 ≤ x ≤ 0.5) unites the models DF(7,8), DF1 and DF2 and all states of intermediate 

order that are characterized by the variational parameters r1 (0 ≤ x ≤ 1/3) and r2 (1/3 ≤ x ≤ 1/2). The third 

phase, P2M, (0.5 ≤ x ≤ 1) unites the models DF(6,7), DF1M and DF2M together with all states of 

intermediate order characterized by the parameters r1’ and r2’ (see Supplementary Information File for the 

description of DF1M and DF2M).  The last phase, P3, (1/3 ≤ x ≤ 2/3) unites the models DF2, DF2M, PY 

and PYM including all states of intermediate order characterized by the variational parameters q, 0 ≤ q ≤ 

1 (1/3 ≤ x ≤ 1/2) and q’, 0 ≤ q’ ≤ 1 (1/2 ≤ x ≤ 2/3). The non-equilibrium Gibbs free energy of mixing is 

computed for each of these phases by combining the relevant enthalpy of mixing and entropy of mixing 

terms according to the equation 

𝜟𝑮𝐦𝐢𝐱(𝒛, 𝑻, 𝒙) = 𝜟𝑯𝐦𝐢𝐱 − 𝑻𝜟𝑺𝐦𝐢𝐱,                 (14) 

where z = {t, t’, r1, r2, r1’, r2’, q, q’} denotes the relevant variational parameter. Note that because of 

symmetric relationship between models defined for 0 ≤ x ≤ 0.5 and 0.5 ≤ x ≤ 1 intervals, the parameters t 

and t’, r1 and r1’, r2 and r2’, q and q’ are mathematically equivalent to each other, however, their 

equilibrium values may differ upon the free energy minimization due to the asymmetry inherent in the 

enthalpy equation. The evaluation of 𝜟𝑯𝐦𝐢𝐱 and 𝜟𝑺𝐦𝐢𝐱 terms requires the knowledge of cation speciation 

(this information is given in Tables 1-6). Moreover, 𝜟𝑯𝐦𝐢𝐱 depends on four energetic parameters 𝜟𝑯𝟏, 

𝜟𝑯𝟐, 𝜟𝑯𝟑 and 𝜟𝑯𝟒. The equilibrium Gibbs free energy for each phase is obtained via the minimization 
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of the non-equilibrium Gibbs free energy with respect to the relevant variational parameter. The phase, 

which provides the lowest equilibrium free energy represents the final equilibrium state. 

The developed hierarchical ordering scheme composed of the four phases provides a continuous 

description of the non-equilibrium enthalpy and entropy of mixing. In this construction all phases are 

linked together through common boundary (limiting) models. For example, the model DF(7,8) is the 

limiting model common to P1 and P2, while the model DF2 is the limiting model common to P2 and P3. 

The advantage of this modelling scheme is that only one variational (order) parameter is required for each 

phase at a given composition, and that the parameters belonging to different phases can be varied 

independently of each other. The final equilibrium Gibbs free energy is combined of the equilibrium Gibbs 

energies of phases that give the lowest energies at each given composition without an account for 

miscibility gaps. The final free energy can be further analysed with the common tangent method to outline 

miscibility gaps. 

 

3. Results 

The simulations are performed here for three sets of energetic parameters (Table 7), where each set 

comprises the values of 𝛥𝐻1, 𝛥𝐻2, 𝛥𝐻3 and 𝛥𝐻4. Set 1 illustrates phase equilibrium in an a AxB1-xO2-0.5x 

system, in which pyrochlore is a stable phase below and above the typical synthesis interval of 1673-1873 

K. Calorimetric data for SmxZr1-xO2-0.5x [25] were used as guides for the selected values. Set 2 models a 

system in which pyrochlore is stable just at and below the synthesis temperature. The data for                

GdxZr1-xO2-0.5x and Gd2Hf2O7 systems [14, 25] were used as the guide for constraining the parameters. The 

third set is chosen to represent a system in which pyrochlore is unstable well below the temperature of 

synthesis. The experimental data for YxZr1-xO2-0.5x [19] and DyxZr1-xO2-0.5x [25] guided the selected values 

of 𝛥𝐻1, 𝛥𝐻2, 𝛥𝐻3 and 𝛥𝐻4. 
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Table 7.  

Enthalpies of reactions (1-4) in kJ/mol used as constraints for the enthalpy of mixing 

Set 𝛥𝐻1 𝛥𝐻2 𝛥𝐻3 𝛥𝐻4 

1 −40 −80 −5   5 

2 −40 −70 −5 −5 

3 −40 −65 −5 −10 

 

 

3.1. System with pyrochlore stable below and above the synthesis temperature.   

One of the main characteristic features of the solution calorimetry data on a variety of AxB1-xO2-0.5x systems 

[19, 25, 26], B = {Zr, Hf}, A={Sm, Gd, Dy, Y}, is the strongly negative enthalpy of mixing in the 

disordered defect fluorite phase, which is computed relative to hypothetical cubic fluorite type 

endmembers BO2 and AO1.5. In the cases of A={Sm, Eu, Gd} the enthalpy of ordered pyrochlore is known 

[27] to be more negative than the enthalpy of the disordered phase at x = 0.5. This behaviour could be 

predicted by choosing strongly negative values of 𝛥𝐻1and 𝛥𝐻2. The values of –40 and –80 kJ/mol were 

found to simultaneously fit the value of 2323 K of the order/disorder transition in Sm-pyrochlore [28] and 

the experimental data of Simoncic and Navrotsky [25] on the enthalpy of mixing in SmxZr1-xO2-0.5x system 

under the assumption that that some of the data points correspond to the pyrochlore phase.  

To compare the simulated isotherms with the experimental data, we assumed the enthalpy of the 

monoclinic to cubic transition in ZrO2 to be 38.8 kJ/mol (per four moles of cations), as obtained by Lee 

et al. [19]. The enthalpy change due to the C-type to cubic (pyrochlore-type) transition in SmO1.5 was 

assumed to be 90 kJ/mol (per four moles of cations). With the value of 90 kJ/mol four samples from the 

study of Simoncic and Navrotsky [25] fell very closely to the predicted 1673 and 1873 K isotherms (Fig. 

3).  The data representation is improved upon including a slight asymmetry introduced via different values 

of 𝛥𝐻3and 𝛥𝐻4.  
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Fig. 3. Enthalpy of mixing in a system with pyrochlore stable below and above the temperature of synthesis constrained by the 

first set of parameters (Table 7). Lines are the enthalpy isotherms. Circles show the solution calorimetry data of Simoncic and 

Navrotsky [25] for ZrO2-SmO1.5 system plotted relative to hypothetical fluorite-type ZrO2 and pyrochlore-type AO1.5. The 

enthalpy of monoclinic to cubic transition in ZrO2 and of C-type/pyrochlore transition in AO1.5 are assumed to be 38.8 kJ/mol 

and 90 kJ/mol, respectively (per four moles of cations).  

 

Fig. 4. Entropy of mixing in a system with stable pyrochlore constrained by Set 1 (Table 7). The colour code of the isotherms 

is the same as in Fig. 3. 

 

The entropy plot (Fig. 4) shows that the transition at x ~ 0.5 occurs from the ordered pyrochlore (q ~ 

1) to the defect fluorite, DF(6,7,8) with t ~ 0. The entropy effect is ~35 J/mol/K. This value is smaller than 

that offered by the ideal mixing model. The model predicts even smaller entropy and enthalpy effects at x 
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~ 0.37, where pyrochlore disorders into a DF2-type solid solution. The type of ordering along and isotherm 

could be guessed by comparing the entropy values along the isotherm to the Fig. 2, which shows the 

entropy frame of all models. 

In Part I [8] we have shown that the experimental a vs. x data can be fitted under the assumption that 

pyrochlore-type solid solution directly transforms into DF1-type solid solution at x ~ 1/3. The present 

temperature-dependent modelling suggests an important modification to this scheme.  The simulations 

show that the transition occurs first as the PY/DF2 type at x ~ 0.37, while upon the further decrease in x, 

the cation distribution in the disordered phase gradually evolves towards DF1-like scheme of SRO. Even 

in systems with stable pyrochlore the composition of x ~ 1/3 corresponds to a wending point between 

DF2-like and DF1-like schemes of order. A direct PY/DF1 transformation at x ~ 1/3 is precluded at 

elevated temperatures because of a too low entropy that is predicted with the DF1 model at x ~ 1/3.  

A different interpretation of the wending point at x ~ 1/3 rises a question of the validity of the results 

of fitting of a vs. x data made in [8]. To test the accuracy of the cation radii and of the effective vacancy 

size determined in [8] we have directly computed isotherms of a vs. x in ZrO2-SmO1.5 system using the 

values of the cation and anion radii taken from Table 5 in Part I [8]. The results are shown in Fig. 5. To 

amplify differences between the model and the experiment, the linear Vegard law relation is subtracted 

from the data and from the isotherms. The plot shows that despite the simplified modelling scheme used 

in Part I in fitting the data, the cation and anion radii assesses in [8] still do a good job in representing the 

data in a-x-T space. This good representation benefits from the very similar a vs. x relationships predicted 

with DF1 and DF(7,8) models within the range of 0 ≤ x ≤ 1/3.  
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Fig. 5. Deviation of the cell parameter, a, (Å) at equilibrium at a given temperature from Vegard law relationship predicted 

with Set 1 (Table 7). Circles are the experimental data [29-32] on SmxZr1-xO2-0.5x solid solution. The colour code of the isotherms 

is the same as in Fig. 3. 

 

3.2. System with pyrochlore marginally stable at the synthesis conditions. 

Set 2 (Table 7) illustrates a system in which the pyrochlore/fluorite transition happens close to the 

temperature of the synthesis (1673-1873 K). It is known that Gd2Zr2O7 compounds can be synthesized 

both in ordered and disordered forms depending on the temperature and quenching rate [33]. The data 

analysis of Saradhi et al. [15] suggests that the enthalpy difference between the ordered and disordered 

phases decreases linearly with the decrease in the radius of A cation, while the formation enthalpy of the 

disordered phase is more or less independent on this parameter. The change from SmxZr1-xO2-0.5x type to 

GdxZr1-xO2-0.5x type of thermodynamic behaviour can thus be simulated by making 𝛥𝐻2 value less negative 

than in Set 1, while keeping the value of 𝛥𝐻1  unchanged. The value of 𝛥𝐻3 was fixed at the value of 5 

kJ/mol as in Set 1 because this parameter cannot depend on the type of A cation. The value of 𝛥𝐻4  was 

then constrained by Eqn. 5.   The parameter of 𝛥𝐻2  = –70 kJ/mol was set as a compromise value, which 

simultaneously fitted the calorimetric data of Simoncic and Navrotsky [25] on disordered GdxZr1-xO2-0.5x 

samples and predicted a reasonable temperature of the order-disorder transition of ~1673 K at x ~ 0.5. 
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The interesting feature of the enthalpy plot (Fig. 6) is that at most of the relevant temperatures the 

transition occurs between the ordered pyrochlore and the disordered DF2-type solid solution. The 

DF(6,7,8)-type distribution is predicted only within a limited range of compositions close to x ~ 0.5. This 

happens because Set 2 enhances the stability of the partially ordered P2 phase relative to the pyrochlore 

phase. The consequence is that the enthalpy and entropy effects of the order/disorder transition are greatly 

reduced relative to values predicted with the Set 1. This tendency is consistent with the experimental 

observations [14, 15]. Importantly, the consistency with the enthalpy of disordering data is obtained 

together with a very reasonable order/disorder transition temperature of ~1673 K. This becomes possible 

due to the reduced values of the entropy effects. The model predicts that the transition occurs between the 

essentially ordered pyrochlore and the DF2-type solid solution. This observation can be made by 

comparing the equilibrium entropy isotherms (See Fig. S1 in the Supplementary Information File) with 

Fig. 2.  

Fig. 8 shows a vs. x isotherms in the GdxZr1-xO2-0.5x solid solution. The experimental data, which 

correspond to the interval of 0.33 ≤ x ≤ 0.6, are consistent with the pyrochlore ordering. Although the 

model predicts DF2-type states to be stable at about the synthesis temperature, a vs. x data suggest that 

such states may not be well quenched in the ZrO2-GdO1.5 system.  
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Fig. 6. Enthalpy of mixing in a system constrained by Set 2 (Table 7). Lines are the enthalpy isotherms. Squares show the 

solution calorimetry data of Simoncic and Navrotsky [25] for ZrO2-GdO1.5 system plotted relative to hypothetical fluorite-type 

ZrO2 and pyrochlore-type AO1.5. The enthalpy of monoclinic to cubic transition in ZrO2 and of C-type/pyrochlore transition in 

GdO1.5 are assumed to be 38.8 kJ/mol and 92.5 kJ/mol, respectively (per four moles of cations). 

 

 

Fig. 7. Deviation of the cell parameter, a, (Å) at equilibrium at a given temperature from Vegard law relationship predicted 

with Set 2 (Table 7). Squares are the experimental a vs. x data [33-37] on GdxZr1-xO2-0.5x solid solution. The colour code of the 

isotherms is the same as in Fig. 6. 

 

3.3. System with defect fluorite stable below and above the synthesis temperature. 

Set 3 in Table 7 illustrates a system in which pyrochlore does not appear as a stable phase at any 

experimental conditions. The values of 𝛥𝐻1, 𝛥𝐻2 and 𝛥𝐻3 parameters are again guided by the analysis  of 

Saradhi et al. [15]. Eqn. 5 implies that the decrease in the absolute value of 𝛥𝐻2 causes the decrease in the 

value of 𝛥𝐻4. This effect makes a combination of P2 and P2M phases more stable than pyrochlore within 

a wide range of temperatures. Pyrochlore is predicted as a stable phase only below 773 K. The calorimetric 

data [19, 25] on YxZr1-xO2-0.5x and DyxZr1-xO2-0.5x systems are consistent with the DF2-like distribution at 

intermediate compositions and with DF1-like distribution at more diluted compositions (Fig. 8). The 

configurational entropy plot (Fig. S2 in the Supplementary Information File) shows that the isotherms 

which correspond to typical conditions of the synthesis (1673, 1773 and 1873 K) lie close to DF(7,8) 
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states, while DF1- and DF2-like ordering is predicted at much lower temperatures. On the other hand, 

most of a vs. x data on YxZr1-xO2-0.5x and DyxZr1-xO2-0.5x systems fall below the 1673K isotherm (Fig. 9 

and Fig. S3) suggesting that the cation distributions in most of the samples may have evolved to DF1- and 

DF2-like ordering states during slow quenching. The more disordered distribution of the samples used in 

the calorimetric study [19] could possibly be explained under the assumption of a more rapid quenching. 

An interesting prediction is that at temperatures of ~1873 K particularly at x ~ 0.5 the entropy isotherms 

bend towards the DF(6,7,8) model suggesting the admixture of partially disordered states containing minor 

amounts of cations in 6-fold coordination. The 89Y MAS-NMR data of Kawata et al. [38] show the 

presence of 6-fold coordinated Y particularly at x = 0.5 and x = 0.6. At x = 0.6 the presence of 6A cations 

is consistent with DF(6,7) model, however, at x = 0.5 the presence of 6-fold coordinated Y implies the 

admixture of more disordered DF(6,7,8) states.  

 

 

Fig. 8. Enthalpy of mixing in ZrO2-AO1.5 system constrained by Set 3 (Table 7). Lines are the enthalpy isotherms. Diamonds 

show the solution calorimetry data of Lie et al. [19] for ZrO2-YO1.5. Down triangles are the data of Simoncic and Navrotsky 

[25] for ZrO2-DyO1.5 system plotted relative to hypothetical fluorite-type ZrO2 and pyrochlore-type AO1.5. The enthalpies of 

C-type/pyrochlore transitions in YO1.5 and in DyO1.5 are assumed to be 110 kJ/mol and 100 kJ/mol, respectively (per four moles 

of cations). 
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Fig. 9. Deviation of the cell parameter, a, (Å) at equilibrium at a given temperature from Vegard law relationship predicted 

with Set 3 (Table 7). Triangles are the experimental a vs. x data [39-42] on YxZr1-xO2-0.5x solid solution. The colour code of the 

isotherms is the same as in Fig. 8. 

  

3.4. Free energy of mixing and phase relations 

The free energy isotherms corresponding to the sets 1, 2 and 3 are shown in Figures S4, S5 and S6, 

respectively (see Supplementary Information File). Fig. S4 shows that in a system that is modelled with 

Set 1 pyrochlore remains as a stable phase up ~2273 K. Two-phase miscibility gaps develop at both sides 

of the pyrochlore field. This prediction is in good qualitative agreement with phase relations observed in 

ZrO2 - NdO1.5 and ZrO2 - SmO1.5 systems [44]. The main difference is that the miscibility gaps are 

predicted to be significantly wider. The change of parameters from Set 1 to Set 3 causes a progressive 

destabilization of pyrochlore relative to a mixture of two SRO phases, P2 and P2M. The P2M phase 

becomes progressively more stable relative to the P2 phase. The phase relations corresponding to set 3 

would be qualitatively consistent with the phase diagram of ZrO2 - YO1.5, if the P2M phase is interpreted 

as the delta phase. Achieving this consistency would require an additional stabilization of the LRO scheme 

of delta phase relative to P2M specifically at the composition of x ~ 4/7. Such calculations cannot be 

performed within the postulates of the present model, where SRO and LRO effects are not distinguished. 
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3.5. Optimal conditions for ionic conductivity 

In Part I [8] we have argued that the ionic conductivity of AxB1-xO2-0.5x solid solutions should benefit from 

vacancy migration events, in which the local strain energy remains the same before and after the swap. 

The condition of zero strain energy change was linked to the condition of the conservation of net cation 

coordination numbers. The latter condition is fulfilled when local cation configurations about the vacancy 

and the migrating oxygen anion before and after the swap are in a symmetric relationship to each other.  

We have assumed that in a DF1-type solid solution the strain energy conserving vacancy migration occurs 

through a continuous network formed by pairs of B4V and B4O clusters of tetrahedral shape sharing a 

common B2 edge. Thus, the migration probability was assumed proportional to the occurrence probability 

of such a pair.  We have also argued that the migration probability should be additionally proportional to 

the factor x(1 – 2x), which follows from the preservation of vacancy-vacancy avoidance. The migration 

probability function was shown to achieve a maximum at x ~ 0.146.  

The present temperature dependent simulations suggest, however, that the DF1 model is applicable 

only at low temperatures or low fractions of AO1.5, while at elevated temperatures the cation distribution 

shifts towards the DF(7,8) model. Thus it appears important to investigate the cluster probabilities within 

the general DF(7,8)/DF1/DF2 model over the interval 0 ≤ x ≤ 1/2. In this model the tetrahedral clusters 

split into (8B,8A)4X, X ={O,V] and (7B,7A)2(
8B,8A)2O types, implying that all vacancies are always inside 

the clusters of the first type. The vacancy swaps could occur only between (7B,7A)4V and 

(7B,7A)2(
8B,8A)2O clusters. Similarly to the already investigated DF1 model case, the condition of the 

local strain energy conservation occurs when these clusters are in 7B4V and 7B2
8B2O configurations. The 

probabilities of finding 8B and 7B in (7B,7A)4V and (7B,7A)2(
8B,8A)2O clusters in the general 

DF(7,8)/DF1/DF2 model are 
[ B8 ]

[ B8 ]+[ A8 ]
 and 

[ B7 ]

[ B7 ]+[ A7 ]
, respectively. Thus, the probability of strain 

conserving migration is proportional to the factor    𝑥(1 − 2𝑥) (
[ B7 ]

[ B7 ]+[ A7 ]
)
4

(
[ B8 ]

[ B8 ]+[ A8 ]
)
2

, where the cation 

species fractions are computed via the minimization of the free energy of the general DF(7,8)/DF1/DF2 
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model. This factor normalized by its maximum value at 273 K is plotted in Fig. 10. The temperature makes 

the probability function more dispersed towards larger values of x, however, the position of the maximum 

does not change significantly within the interval of 273-1073 K, thus the argument on the origin of 

maximum made in [8] remains valid with the more general model. 

 

Fig. 10. Isotherms of normalized probability of strain energy conserved vacancy migration for an AxZr1-xO2-0.5x DF(7,8)-type 

solid solution predicted with Set 3. The decreasing temperature moves the distribution closer to DF1 and DF2 models. The 

pyrochlore-type ordering is suppressed.  

 

3.5. Optimal conditions for radiation stability 

In Part I we hypothesized that the radiation stability benefits from maximization of cation species that 

occur with same coordination numbers. The elastic energy is thought to be mostly affected by swaps that 

lead to a change in cation coordination. Thus the maximisation of species of same coordination should be 

beneficial for the radiation stability.  Trivially, within this hypothesis, the end-members BO2 and AO1.5 

should correspond to local maxima in radiation stability as their structures are based on cations of same 

type. A non-trivial problem is the prediction of relative stability of solid solution phases.  The relative 

stability of such phases could possibly be modelled with a function that grows with an increase in fractions 

of species with same coordination at a given value of x. It is also conceivable that the radiation stability 
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increases at a composition, in which swaps between cations occurring in same configurations can be 

achieved in a plethora of equivalent ways. Accidently, the configurational entropy of cations serves the 

purpose of representing such a function. Fig. 11 plots the entropy of cations. Based on this figure one can 

predict the solid solutions with the DF2-type distribution to have higher radiation stability relative to solid 

solutions with PY-type distribution. On the other hand, DF2- and DF1-type solid solutions with the 

compositions centred at x ~ 1/3 and x ~ 2/3 should be less stable relative to solid solutions with DF(7,8) 

and DF(6,7) distribution schemes. As the latter solid solutions are stabilized by the temperature factor, 

one can assume that the temperature affects the radiation stability not just through the agitation of atoms, 

but also through making the cation distributions less susceptible to defect energy accumulation.  

 

 

Fig. 11. Entropy of cations in the models discussed in the text. The entropy function in the model DF(6,7,8) coincides with the 

functions corresponding to models DF(7,8) and DF(6,7). Models PY and PYM have zero entropy. The entropy functions are 

thought to correlate with relative radiation stability of solid solutions with different schemes of order. 

 

4. Discussion 

A consistent description of calorimetric and structural data is achieved here with a model that assumes the 

presence in defect fluorite of a hierarchy of four schemes of anion and cation/anion order. The hierarchy 
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of ordering effects makes sense considering the different strength of interactions that drive the ordering. 

The strongest interactions are due to the electrostatic forces between the vacancies, the less strong are the 

strain-driven interactions between the anions and cations and the least strong interactions are those that 

require a compromise between anion-anion and cation-anion ordering tendencies [9,10]. The consistent 

description of calorimetric and structural data implies that at typical temperatures of synthesis the ordering 

due to the strongest anion-anion interactions is essentially complete. The observed variability in the 

thermodynamic behaviour of AxZr1-xO2-0.5x systems that is manifested by the temperature of P/DF 

transition is determined by less strong ordering effects that imply a compromise between anion-anion and 

cation-anion interactions. 

 One of the aims of the present thermodynamic modelling was to justify the ordering schemes, which 

were postulated in [8]. This aim is achieved. We show here that the DF1, DF2, PY, DF1M, DF2M and 

PYM models are thermodynamically sensible, representing ground states of a more general model. The 

schemes of SRO (or LRO) that underline these models can be thermodynamically stabilized by four 

parameters representing enthalpy effects of reactions (1-4) between cation species. The sum of the effects 

of reactions (1), (3) and (4) drives the ordering from DF(6,7,8) towards DF(7,8) and DF(6,7), the 

difference of the effects of reactions (1) and (4) drives the ordering from DF(7,8) towards DF1 and DF2, 

similarly, the difference of the effects of reactions (1) and (3) drives the ordering from DF(6,7) to DF1M 

and DF2M, while the difference of effects of reactions (2) and (1) drives the ordering from DF2 and DF2M 

to PY and PYM, respectively. The enthalpies of reactions (1) and (2) determine the magnitude of the 

ordering effects and the sequence of ordering transformations.  

The study predicts negative enthalpies of mixing in the disordered solid solutions and reduced values 

of the entropy effects due to the order/disorder pyrochlore/fluorite transition consistently with the 

experiment. Importantly, the enthalpy isotherms that fit solution calorimetry data simultaneously 

reproduce the data on a vs. x. At the same time, the adopted values of the enthalpy effects of the reactions 

(1) and (2) are consistent with available solution calorimetry data. Particularly, the values of 𝛥𝐻1and 𝛥𝐻2 
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are consistent with the analysis of solution calorimetry data on A2B2O7 systems given by Saradhi et al. 

[15], under the assumption that disordered solutions are based on the combination of 7A and 7B species. 

Interestingly, the same assumption allows to link the calorimetric data to defect formation energies in 

pyrochlores. Indeed, the formation energy of cation antisite (CA) defect in pyrochlore corresponds to the 

effect of reverse reaction (2), while the formation of anion Frenkel pair (AFP) corresponds to twice the 

difference of reactions (1) and (2). Indeed, a swap of a vacancy from 8b into a neighbouring 48f site 

creates two 7B and two 7A cations from two 6B and two 8A cations. The defect formation energies have 

been recently computed with DFT by Li et al. [46] for pyrochlores covering a wide range of A and B 

cation radii.  Consistently with the calorimetric data [15], the AFP formation energies [46] decrease 

monotonously in zirconate pyrochlores with the decrease in the radius of A cation changing their sign to 

negative when the radius of A becomes smaller than that of Nd [1]. Though, the calorimetric data show 

that the fluorite state is higher in the enthalpy for all studied zirconate pyrochlores. This suggests that the 

AFP formation energies calculated with DFT likely need to be adjusted (increased) by about 0.5 eV to 

yield the sign change not at RA ~ RNd , but at RA ~ RY. A similar level of consistency is seen between the 

calorimetric data and the CA formation energies computed by Li et al. [46]. 

The present study reveals a more detailed scheme of transformations between the different types of 

ordering. In Part I we assumed that the transitions DF1/DF2 and DF1/PY always occur at x = 1/3 

independently of the temperature. Here we show that this assumption can be justified only at low 

temperatures. The temperature dependent calculations suggest that samples with 0 ≤ x ≤ 1/3 synthesized 

at ~1873 would unlikely develop pure DF1-type ordering. A more realistic model predicts higher degrees 

of disorder in the vicinity of x = 1/3.  Particularly, the proposition made in [8] that the composition driven 

transition from defect fluorite to pyrochlore in all pyrochlore-type systems happens as a DF1/PY 

transformation requires a modification. Temperature dependent simulations suggest that at a typical 

synthesis temperature with the increase in x the DF1-type solid solution first evolves towards the DF2-

type cation distribution through DF(7,8)-like states, and then the DF2-type solid solution transforms into 
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the PY phase.  The exact composition at which the transformation takes place is predicted to depend on 

the synthesis temperature. The main reason for the admixture of states with higher degrees of disorder at 

x ~ 1/3 is the minimum in the configurational entropy, which develops at this composition at low 

temperatures. When the temperature increases, a strong SRO at x ~ 1/3 becomes thermodynamically 

unfavourable. On the other hand, our calculations show that in the range of 0 ≤ x ≤ 1/3 models DF1 and 

DF(7,8) are practically indistinguishable in terms of the predicted a vs. x dependences. This observation 

justifies the use of the simple DF1/PY model in fitting a vs. x data, as done in [8]. The temperature-

dependent simulations unexpectedly predict that at a composition close to x ~ 0.5 pyrochore could directly 

disorder into DF(6,7,8)-like phase avoiding DF2-like distribution. This behaviour is seen in systems which 

have a strong tendency to the formation of pyrochlore. This could be a drawback of the simplified (LRO) 

entropy model for vacancy ordering in DF(6,7,8). This model assumes that vacancies are arranged over a 

hypothetical simple cubic sublattice with the lattice vector of 2a.  At low temperatures and at x = 0.5 this 

assumption leads to zero entropy contribution from O/V mixing. In reality the short-range ordering of 

vacancies even at x = 0.5 can be realised in a plethora of different ways resulting in a larger entropy for 

DF2-type distribution, thus, making it more stable relative to DF(6,7,8).  

The interesting question is how the presently developed thermodynamic model correlates with the 

weberite model of defect fluorite, which has been proposed in recent crystallographic studies [16, 17]. 

Within the present concept the weberite-type distribution at x = 0.5, 8A6B(7Ax
7B1-x)2O7V, could be 

understood as a result of an incomplete PY/DF2 transformation corresponding to q ~ 0.5. The present 

model does not predict such intermediate states as equilibrium states favouring an abrupt transition from 

PY-like, 8A2
6B2O7V, to DF2-like, (7Ax

7B1-x)4O7V, distribution.  The main problem of stabilizing weberite 

within the present modelling frame, is its low configurational entropy, which is formally 2Rln2 per four 

cations at x = 0.5. The solution calorimetry data [15] and data on the temperature of the order/disorder 

transition [45] require a twice larger value. This larger entropy is met by the DF2 model. The observed 

uniformly good performance of the weberite model [16] could possibly be explained under the assumption 
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that structural differences between DF2, DF1 and weberite ordering schemes are not well resolved at the 

PDF level. Indeed, all these models comply with a high degree of vacancy-vacancy avoidance and a high 

or intermediate degree of B-cation-to-vacancy association. We conclude that the building of a model of 

defect fluorite that is consistent with both structural and thermodynamic data requires a further effort. The 

testing of DF1, DF2 and DF(7,8) models against neutron scattering data could be the next step towards 

this aim.  

 

 

5. Conclusions 

A hierarchical thermodynamic model of cation and anion ordering is developed and is shown to be 

consistent with calorimetric and structural data on defect fluorite and pyrochlore solid solutions. The main 

conclusion of the present study as well as of the connected study [8] is that a variety of structural, 

thermodynamic and physical properties of Zr-based fluorite and pyrochlore ceramics could be understood 

within the concept of constraints on cation coordination numbers. These constraints are introduced here 

with the help of the concept of cation species, which distinguishes cations not only through their chemical 

type and charge, but also through their coordination numbers. SRO and LRO constraints are set either as 

rigid postulates requiring certain types of cation species to vanish [8], or (in a more subtle way) 

thermodynamically by defining energies of reactions between cation species.  

The changes in the enthalpy of mixing due changes in the composition and/or state of order are 

expressed proportional to progresses of the reactions (1-4) between cation species. These changes are 

accompanied by a reduction in the configurational entropy. The entropy is decreased, on the one hand, 

due to a reduction of anion sites available for vacancies, and, on the other hand, due to restrictions on 

mixing between cation species with different coordination numbers. Differences in the thermodynamic 

properties of ZrO2-AO1.5 systems, e.g. the relative stability of the pyrochlore phase, and different types of 

a vs. x relationships, can be attributed to the ratio of 𝛥𝐻2 and  𝛥𝐻1  parameters. Presumably, the value of 
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𝛥𝐻2 correlates with the difference in the radii of 8-fold A and 6-fold B cations. The stabilization of DF1 

type ordering is attributed to the negative enthalpy effect of reaction (8), i.e. to the difference of the effects 

of reactions (1) and (4). The negative enthalpy fits with the concept of strain minimization via the 

association of small (B) cations with large vacancies and large A cations with oxygen anions.  

The concept of DF1-type order may have an important implication to the mechanism of ionic 

conductivity in doped zirconia. The association of vacancies to B (Zr) cations restricts the majority of O/V 

swaps to a network of connected B4V and B4O clusters within which the transport of vacancies could 

occur without a net change in the spectrum of cation coordination numbers, avoiding states with high local 

strain [8]. Here the model [8] is extended to a more general model of DF(7,8)-DF1-DF2 ordering.  It is 

shown that the more general model predicts a similar composition dependence of the relative conductivity, 

with the maximum at x ~ 0.14. 

In an analogue with low-strain O/V swaps a concept of low-strain A/B cation swaps and cation Frenkel 

pair defect formation events has been proposed in [8]. Such swaps could be identified by counting net 

changes in cation coordination. This concept leads to a proposition that mixed compounds that maximize 

numbers of cation species with same coordination numbers should have superior resistance to the radiation 

induced amorphization. Here this concept is developed further by invoking the entropy argument. We 

argue that the radiation stability should be correlated with the number of microstates that are consistent 

with a given spectrum of cation coordination numbers. The larger the number of such microstates, the 

higher the probability that this spectrum will not be affected by a defect formation event. The prediction 

of relative radiation stability of a pair of structures with the same composition could thus be made by 

comparing their configurational entropies. 

Further effort is needed in testing the model predictions and in extending the model to BO2 - AO1.5 

systems with B = {Ti, Hf, Ce, Th, U} and A = {Ln, An}. We assume that the association of a vacancy to 

a B-type cation would be much less pronounced in systems with Ce, Th and U, while additional 
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complexities would be expected for Ce- and U-systems due to redox effects. Vacancy-vacancy avoidance 

constrains are expected to be relevant for all systems.  
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