000904128 001__ 904128
000904128 005__ 20240712084606.0
000904128 0247_ $$2doi$$a10.3389/fchem.2021.705024
000904128 0247_ $$2Handle$$a2128/30058
000904128 0247_ $$2altmetric$$aaltmetric:116470137
000904128 0247_ $$2pmid$$a34869199
000904128 0247_ $$2WOS$$aWOS:000725678600001
000904128 037__ $$aFZJ-2021-05698
000904128 082__ $$a540
000904128 1001_ $$0P:(DE-Juel1)144348$$aVinograd, Victor L.$$b0$$eCorresponding author$$ufzj
000904128 245__ $$aThermodynamic and Structural Modelling of Non-Stoichiometric Ln-Doped UO2 Solid Solutions,Ln = {La, Pr, Nd, Gd}
000904128 260__ $$aLausanne$$bFrontiers Media$$c2021
000904128 3367_ $$2DRIVER$$aarticle
000904128 3367_ $$2DataCite$$aOutput Types/Journal article
000904128 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641889546_27684
000904128 3367_ $$2BibTeX$$aARTICLE
000904128 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904128 3367_ $$00$$2EndNote$$aJournal Article
000904128 520__ $$aAvailable data on the dependence of the equilibrium chemical potential of oxygen on degrees of doping, z, and non-stoichiometry, x, y, in U1-zLnzO2+0.5(x-y) fluorite solid solutions and data on the dependence of the lattice parameter, a, on the same variables are combined within a unified structural-thermodynamic model. The thermodynamic model fits experimental isotherms of the oxygen potential under the assumptions of a non-ideal mixing of the endmembers, UO2, UO2.5, UO1.5, LnO1.5, and Ln0.5U0.5O2, and of a significant reduction in the configurational entropy arising from short-range ordering (SRO) within cation-anion distributions. The structural model further investigates the SRO in terms of constraints on admissible values of cation coordination numbers and, building on these constraints, fits the lattice parameter as a function of z, y, and x. Linking together the thermodynamic and structural models allows predicting the lattice parameter as a function of z, T and the oxygen partial pressure. The model elucidates contrasting structural and thermodynamic changes due to the doping with LaO1.5, on the one hand, and with NdO1.5 and GdO1.5, on the other hand. An increased oxidation resistance in the case of Gd and Nd is attributed to strain effects caused by the lattice contraction due to the doping and to an increased thermodynamic cost of a further contraction required by the oxidation.
000904128 536__ $$0G:(DE-HGF)POF4-1411$$a1411 - Nuclear Waste Disposal (POF4-141)$$cPOF4-141$$fPOF IV$$x0
000904128 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904128 7001_ $$0P:(DE-Juel1)130329$$aBukaemskiy, Andrey A.$$b1$$ufzj
000904128 7001_ $$0P:(DE-Juel1)130383$$aModolo, Giuseppe$$b2$$ufzj
000904128 7001_ $$0P:(DE-Juel1)156511$$aDeissmann, Guido$$b3$$ufzj
000904128 7001_ $$0P:(DE-Juel1)130324$$aBosbach, Dirk$$b4$$ufzj
000904128 773__ $$0PERI:(DE-600)2711776-5$$a10.3389/fchem.2021.705024$$gVol. 9, p. 705024$$p705024$$tFrontiers in Chemistry$$v9$$x2296-2646$$y2021
000904128 8564_ $$uhttps://juser.fz-juelich.de/record/904128/files/fchem-09-705024.pdf$$yOpenAccess
000904128 909CO $$ooai:juser.fz-juelich.de:904128$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144348$$aForschungszentrum Jülich$$b0$$kFZJ
000904128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130329$$aForschungszentrum Jülich$$b1$$kFZJ
000904128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130383$$aForschungszentrum Jülich$$b2$$kFZJ
000904128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156511$$aForschungszentrum Jülich$$b3$$kFZJ
000904128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130324$$aForschungszentrum Jülich$$b4$$kFZJ
000904128 9131_ $$0G:(DE-HGF)POF4-141$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1411$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vNukleare Entsorgung$$x0
000904128 9141_ $$y2021
000904128 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000904128 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000904128 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904128 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT CHEM : 2019$$d2021-02-04
000904128 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-04
000904128 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-04
000904128 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000904128 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-04
000904128 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000904128 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000904128 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904128 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-04
000904128 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-04
000904128 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000904128 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000904128 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-04
000904128 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000904128 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000904128 9801_ $$aFullTexts
000904128 980__ $$ajournal
000904128 980__ $$aVDB
000904128 980__ $$aUNRESTRICTED
000904128 980__ $$aI:(DE-Juel1)IEK-6-20101013
000904128 981__ $$aI:(DE-Juel1)IFN-2-20101013