000904129 001__ 904129
000904129 005__ 20240712100849.0
000904129 0247_ $$2doi$$a10.5194/acp-21-7515-2021
000904129 0247_ $$2ISSN$$a1680-7316
000904129 0247_ $$2ISSN$$a1680-7324
000904129 0247_ $$2Handle$$a2128/29727
000904129 0247_ $$2altmetric$$aaltmetric:106048953
000904129 0247_ $$2WOS$$aWOS:000653621700005
000904129 037__ $$aFZJ-2021-05699
000904129 082__ $$a550
000904129 1001_ $$0P:(DE-Juel1)169614$$aDiallo, Mohamadou$$b0$$eCorresponding author
000904129 245__ $$aThe advective Brewer–Dobson circulation in the ERA5 reanalysis: climatology, variability, and trends
000904129 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000904129 3367_ $$2DRIVER$$aarticle
000904129 3367_ $$2DataCite$$aOutput Types/Journal article
000904129 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641194288_7203
000904129 3367_ $$2BibTeX$$aARTICLE
000904129 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904129 3367_ $$00$$2EndNote$$aJournal Article
000904129 520__ $$aThe stratospheric Brewer–Dobson circulation (BDC) is an important element of climate as it determines the transport and distributions of key radiatively active atmospheric trace gases, which affect the Earth's radiation budget and surface climate.Here, we evaluate the interannual variability, climatology, and trends of the BDC in the ERA5 reanalysis and intercompare them with its predecessor, the ERA-Interim reanalysis, for the 1979–2018 period. We also assess the modulation of the circulation by the Quasi-Biennial Oscillation (QBO) and the El Niño–Southern Oscillation (ENSO), as well as the forcings of the circulation by the planetary and gravity wave drag. The comparison of ERA5 and ERA-Interim reanalyses shows a very good agreement in the morphology of the BDC and in its structural modulations by the natural variability related to QBO and ENSO. Despite the good agreement in the spatial structure, there are substantial and significant differences in the strength of the BDC and natural variability impacts on the BDC between the two reanalyses, particularly in the upper troposphere and lower stratosphere (UTLS) and in the upper stratosphere. Throughout most regions of the stratosphere, the variability and trends of the advective BDC are stronger in the ERA5 reanalysis due to stronger planetary and gravity wave forcings, except in the UTLS below 20 km where the tropical upwelling is up to 40 % weaker mainly due to a significantly weaker gravity wave forcing at the equatorial-ward upper flank of the subtropical jet. In the extratropics, the large-scale downwelling is stronger in ERA5 than in ERA-Interim that is linked to significant differences in planetary and gravity wave forcings in the upper stratosphere. Analysis of the BDC trend shows a global insignificant acceleration of the annual mean residual circulation with an acceleration rate of about 1.5 % decade−1 at 70 hPa due to the long-term intensification in gravity and planetary wave breaking, consistent with observed and modelled BDC changes.Our findings suggest that the advective BDC from the kinematic ERA5 reanalysis is well suited for climate model validation in the UTLS and mid-stratosphere when using the standard formula of zonally averaged zonal momentum equation. The reported differences between the two reanalyses may also affect the nudged climate model simulations. Therefore, additional studies are needed to investigate whether or not nudging climate models toward ERA5 reanalysis will reproduce the upwelling trends from free-running simulations and from ERA5. Finally, further studies are also needed to better understand the impact of the new non-orographic gravity wave parameterization scheme, higher model top, and the representation of the sponge layer in ERA5 on the differences in the upper stratosphere and polar regions.
000904129 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000904129 536__ $$0G:(GEPRIS)429838442$$aDFG project 429838442 - Wie wirken sich natürliche Variabilität und anthropogen bedingte Änderungen auf die stratosphärische Brewer-Dobson Zirkulation und den Ozonfluss in die Troposphäre aus? $$c429838442$$x1
000904129 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904129 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b1
000904129 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b2$$ufzj
000904129 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-7515-2021$$gVol. 21, no. 10, p. 7515 - 7544$$n10$$p7515 - 7544$$tAtmospheric chemistry and physics$$v21$$x1680-7316$$y2021
000904129 8564_ $$uhttps://juser.fz-juelich.de/record/904129/files/acp-21-7515-2021.pdf$$yOpenAccess
000904129 909CO $$ooai:juser.fz-juelich.de:904129$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169614$$aForschungszentrum Jülich$$b0$$kFZJ
000904129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b1$$kFZJ
000904129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b2$$kFZJ
000904129 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000904129 9141_ $$y2021
000904129 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000904129 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000904129 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904129 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000904129 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000904129 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000904129 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000904129 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000904129 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000904129 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000904129 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904129 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000904129 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000904129 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000904129 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000904129 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000904129 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000904129 9801_ $$aFullTexts
000904129 980__ $$ajournal
000904129 980__ $$aVDB
000904129 980__ $$aUNRESTRICTED
000904129 980__ $$aI:(DE-Juel1)IEK-7-20101013
000904129 981__ $$aI:(DE-Juel1)ICE-4-20101013