000904131 001__ 904131
000904131 005__ 20240712100849.0
000904131 0247_ $$2doi$$a10.5194/amt-14-239-2021
000904131 0247_ $$2ISSN$$a1867-1381
000904131 0247_ $$2ISSN$$a1867-8548
000904131 0247_ $$2Handle$$a2128/29724
000904131 0247_ $$2altmetric$$aaltmetric:97654014
000904131 0247_ $$2WOS$$aWOS:000611014800001
000904131 037__ $$aFZJ-2021-05701
000904131 082__ $$a550
000904131 1001_ $$0P:(DE-HGF)0$$aJorge, Teresa$$b0$$eCorresponding author
000904131 245__ $$aUnderstanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds
000904131 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2021
000904131 3367_ $$2DRIVER$$aarticle
000904131 3367_ $$2DataCite$$aOutput Types/Journal article
000904131 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641194117_4486
000904131 3367_ $$2BibTeX$$aARTICLE
000904131 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904131 3367_ $$00$$2EndNote$$aJournal Article
000904131 520__ $$aBalloon-borne water vapour measurements in the upper troposphere and lower stratosphere (UTLS) by means of frost point hygrometers provide important information on air chemistry and climate. However, the risk of contamination from sublimating hydrometeors collected by the intake tube may render these measurements unusable, particularly after crossing low clouds containing supercooled droplets. A large set of (sub)tropical measurements during the 2016–2017 StratoClim balloon campaigns at the southern slopes of the Himalayas allows us to perform an in-depth analysis of this type of contamination. We investigate the efficiency of wall contact and freezing of supercooled droplets in the intake tube and the subsequent sublimation in the UTLS using computational fluid dynamics (CFD). We find that the airflow can enter the intake tube with impact angles up to 60∘, owing to the pendulum motion of the payload. Supercooled droplets with radii > 70 µm, as they frequently occur in mid-tropospheric clouds, typically undergo contact freezing when entering the intake tube, whereas only about 50 % of droplets with 10 µm radius freeze, and droplets < 5 µm radius mostly avoid contact. According to CFD, sublimation of water from an icy intake can account for the occasionally observed unrealistically high water vapour mixing ratios (χH2O > 100 ppmv) in the stratosphere. Furthermore, we use CFD to differentiate between stratospheric water vapour contamination by an icy intake tube and contamination caused by outgassing from the balloon and payload, revealing that the latter starts playing a role only during ascent at high altitudes (p < 20 hPa).
000904131 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000904131 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904131 7001_ $$00000-0001-7667-443X$$aBrunamonti, Simone$$b1
000904131 7001_ $$00000-0001-5740-8056$$aPoltera, Yann$$b2
000904131 7001_ $$0P:(DE-HGF)0$$aWienhold, Frank G.$$b3
000904131 7001_ $$0P:(DE-HGF)0$$aLuo, Bei P.$$b4
000904131 7001_ $$0P:(DE-HGF)0$$aOelsner, Peter$$b5
000904131 7001_ $$0P:(DE-Juel1)171206$$aHanumanthu, Sreeharsha$$b6
000904131 7001_ $$00000-0003-3877-6800$$aSingh, Bhupendra B.$$b7
000904131 7001_ $$0P:(DE-HGF)0$$aKörner, Susanne$$b8
000904131 7001_ $$0P:(DE-HGF)0$$aDirksen, Ruud$$b9
000904131 7001_ $$00000-0002-4597-1690$$aNaja, Manish$$b10
000904131 7001_ $$00000-0003-4442-0755$$aFadnavis, Suvarna$$b11
000904131 7001_ $$0P:(DE-HGF)0$$aPeter, Thomas$$b12
000904131 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-14-239-2021$$gVol. 14, no. 1, p. 239 - 268$$n1$$p239 - 268$$tAtmospheric measurement techniques$$v14$$x1867-1381$$y2021
000904131 8564_ $$uhttps://juser.fz-juelich.de/record/904131/files/amt-14-239-2021.pdf$$yOpenAccess
000904131 909CO $$ooai:juser.fz-juelich.de:904131$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171206$$aForschungszentrum Jülich$$b6$$kFZJ
000904131 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000904131 9141_ $$y2021
000904131 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000904131 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000904131 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904131 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000904131 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2019$$d2021-01-31
000904131 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-31
000904131 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-31
000904131 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000904131 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-31
000904131 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000904131 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000904131 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904131 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000904131 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-31
000904131 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31
000904131 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000904131 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000904131 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000904131 9801_ $$aFullTexts
000904131 980__ $$ajournal
000904131 980__ $$aVDB
000904131 980__ $$aUNRESTRICTED
000904131 980__ $$aI:(DE-Juel1)IEK-7-20101013
000904131 981__ $$aI:(DE-Juel1)ICE-4-20101013