000904132 001__ 904132
000904132 005__ 20240712100849.0
000904132 0247_ $$2doi$$a10.5194/acp-21-9585-2021
000904132 0247_ $$2ISSN$$a1680-7316
000904132 0247_ $$2ISSN$$a1680-7324
000904132 0247_ $$2Handle$$a2128/29725
000904132 0247_ $$2altmetric$$aaltmetric:108293195
000904132 0247_ $$2WOS$$aWOS:000668691200001
000904132 037__ $$aFZJ-2021-05702
000904132 082__ $$a550
000904132 1001_ $$0P:(DE-HGF)0$$aPlaza, Nuria Pilar$$b0$$eCorresponding author
000904132 245__ $$aProcesses influencing lower stratospheric water vapour in monsoon anticyclones: insights from Lagrangian modelling
000904132 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000904132 3367_ $$2DRIVER$$aarticle
000904132 3367_ $$2DataCite$$aOutput Types/Journal article
000904132 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641194163_5797
000904132 3367_ $$2BibTeX$$aARTICLE
000904132 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904132 3367_ $$00$$2EndNote$$aJournal Article
000904132 520__ $$aWe investigate the influence of different chemical and physical processes on the water vapour distribution in the lower stratosphere (LS), in particular in the Asian and North American monsoon anticyclones (AMA and NAMA, respectively). Specifically, we use the chemistry transport model CLaMS to analyse the effects of large-scale temperatures, methane oxidation, ice microphysics, and small-scale atmospheric mixing processes in different model experiments. All these processes hydrate the LS and, particularly, the AMA. While ice microphysics has the largest global moistening impact, it is small-scale mixing which dominates the specific signature in the AMA in the model experiments. In particular, the small-scale mixing parameterization strongly contributes to the water vapour transport to this region and improves the simulation of the intra-seasonal variability, resulting in a better agreement with the Aura Microwave Limb Sounder (MLS) observations. Although none of our experiments reproduces the spatial pattern of the NAMA as seen in MLS observations, they all exhibit a realistic annual cycle and intra-seasonal variability, which are mainly controlled by large-scale temperatures. We further analyse the sensitivity of these results to the domain-filling trajectory set-up, here-called Lagrangian trajectory filling (LTF). Compared with MLS observations and with a multiyear reference simulation using the full-blown chemistry transport model version of CLaMS, we find that the LTF schemes result in a drier global LS and in a weaker water vapour signal over the monsoon regions, which is likely related to the specification of the lower boundary condition. Overall, our results emphasize the importance of subgrid-scale mixing and multiple transport pathways from the troposphere in representing water vapour in the AMA.
000904132 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000904132 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904132 7001_ $$0P:(DE-Juel1)173992$$aPodglajen, Aurélien$$b1
000904132 7001_ $$0P:(DE-HGF)0$$aPeña-Ortiz, Cristina$$b2
000904132 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b3$$ufzj
000904132 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-9585-2021$$gVol. 21, no. 12, p. 9585 - 9607$$n12$$p9585 - 9607$$tAtmospheric chemistry and physics$$v21$$x1680-7316$$y2021
000904132 8564_ $$uhttps://juser.fz-juelich.de/record/904132/files/acp-21-9585-2021.pdf$$yOpenAccess
000904132 909CO $$ooai:juser.fz-juelich.de:904132$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b3$$kFZJ
000904132 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000904132 9141_ $$y2021
000904132 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000904132 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000904132 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904132 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000904132 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000904132 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000904132 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000904132 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000904132 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000904132 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000904132 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904132 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000904132 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000904132 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000904132 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000904132 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000904132 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000904132 9801_ $$aFullTexts
000904132 980__ $$ajournal
000904132 980__ $$aVDB
000904132 980__ $$aUNRESTRICTED
000904132 980__ $$aI:(DE-Juel1)IEK-7-20101013
000904132 981__ $$aI:(DE-Juel1)ICE-4-20101013