000904133 001__ 904133
000904133 005__ 20240712100911.0
000904133 0247_ $$2doi$$a10.1175/BAMS-D-20-0034.1
000904133 0247_ $$2ISSN$$a0003-0007
000904133 0247_ $$2ISSN$$a1520-0477
000904133 0247_ $$2Handle$$a2128/29730
000904133 0247_ $$2WOS$$aWOS:000651498500014
000904133 037__ $$aFZJ-2021-05703
000904133 082__ $$a550
000904133 1001_ $$0P:(DE-HGF)0$$aRapp, Markus$$b0$$eCorresponding author
000904133 245__ $$aSOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot
000904133 260__ $$aBoston, Mass.$$bASM$$c2021
000904133 3367_ $$2DRIVER$$aarticle
000904133 3367_ $$2DataCite$$aOutput Types/Journal article
000904133 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669887862_20348
000904133 3367_ $$2BibTeX$$aARTICLE
000904133 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904133 3367_ $$00$$2EndNote$$aJournal Article
000904133 520__ $$aThe southern part of South America and the Antarctic peninsula are known as the world’s strongest hotspot region of stratospheric gravity wave (GW) activity. Large tropospheric winds are deflected by the Andes and the Antarctic Peninsula and excite GWs that might propagate into the upper mesosphere. Satellite observations show large stratospheric GW activity above the mountains, the Drake Passage, and in a belt centered along 60°S. This scientifically highly interesting region for studying GW dynamics was the focus of the Southern Hemisphere Transport, Dynamics, and Chemistry–Gravity Waves (SOUTHTRAC-GW) mission. The German High Altitude and Long Range Research Aircraft (HALO) was deployed to Rio Grande at the southern tip of Argentina in September 2019. Seven dedicated research flights with a typical length of 7,000 km were conducted to collect GW observations with the novel Airborne Lidar for Middle Atmosphere research (ALIMA) instrument and the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) limb sounder. While ALIMA measures temperatures in the altitude range from 20 to 90 km, GLORIA observations allow characterization of temperatures and trace gas mixing ratios from 5 to 15 km. Wave perturbations are derived by subtracting suitable mean profiles. This paper summarizes the motivations and objectives of the SOUTHTRAC-GW mission. The evolution of the atmospheric conditions is documented including the effect of the extraordinary Southern Hemisphere sudden stratospheric warming (SSW) that occurred in early September 2019. Moreover, outstanding initial results of the GW observation and plans for future work are presented.
000904133 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000904133 536__ $$0G:(DE-HGF)POF4-2A3$$a2A3 - Remote Sensing (CARF - CCA) (POF4-2A3)$$cPOF4-2A3$$fPOF IV$$x1
000904133 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904133 7001_ $$0P:(DE-HGF)0$$aKaifler, Bernd$$b1
000904133 7001_ $$0P:(DE-HGF)0$$aDörnbrack, Andreas$$b2
000904133 7001_ $$0P:(DE-HGF)0$$aGisinger, Sonja$$b3
000904133 7001_ $$0P:(DE-HGF)0$$aMixa, Tyler$$b4
000904133 7001_ $$0P:(DE-Juel1)184726$$aReichert, Robert$$b5
000904133 7001_ $$0P:(DE-HGF)0$$aKaifler, Natalie$$b6
000904133 7001_ $$0P:(DE-HGF)0$$aKnobloch, Stefanie$$b7
000904133 7001_ $$0P:(DE-HGF)0$$aEckert, Ramona$$b8
000904133 7001_ $$0P:(DE-HGF)0$$aWildmann, Norman$$b9
000904133 7001_ $$0P:(DE-HGF)0$$aGiez, Andreas$$b10
000904133 7001_ $$0P:(DE-Juel1)169740$$aKrasauskas, Lukas$$b11$$ufzj
000904133 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b12$$ufzj
000904133 7001_ $$0P:(DE-Juel1)176613$$aGeldenhuys, Markus$$b13$$ufzj
000904133 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b14$$ufzj
000904133 7001_ $$0P:(DE-HGF)0$$aWoiwode, Wolfgang$$b15
000904133 7001_ $$0P:(DE-HGF)0$$aFriedl-Vallon, Felix$$b16
000904133 7001_ $$0P:(DE-HGF)0$$aSinnhuber, Björn-Martin$$b17
000904133 7001_ $$0P:(DE-HGF)0$$aTorre, Alejandro de la$$b18
000904133 7001_ $$0P:(DE-HGF)0$$aAlexander, Peter$$b19
000904133 7001_ $$0P:(DE-HGF)0$$aHormaechea, Jose Luis$$b20
000904133 7001_ $$0P:(DE-HGF)0$$aJanches, Diego$$b21
000904133 7001_ $$0P:(DE-HGF)0$$aGarhammer, Markus$$b22
000904133 7001_ $$0P:(DE-HGF)0$$aChau, Jorge L.$$b23
000904133 7001_ $$0P:(DE-HGF)0$$aConte, J. Federico$$b24
000904133 7001_ $$0P:(DE-HGF)0$$aHoor, Peter$$b25
000904133 7001_ $$0P:(DE-HGF)0$$aEngel, Andreas$$b26
000904133 773__ $$0PERI:(DE-600)2029396-3$$a10.1175/BAMS-D-20-0034.1$$gVol. 102, no. 4, p. E871 - E893$$n4$$pE871 - E893$$tBulletin of the American Meteorological Society$$v102$$x0003-0007$$y2021
000904133 8564_ $$uhttps://juser.fz-juelich.de/record/904133/files/%5B15200477%20-%20Bulletin%20of%20the%20American%20Meteorological%20Society%5D%20SOUTHTRAC-GW%20An%20Airborne%20Field%20Campaign%20to%20Explore%20Gravity%20Wave%20Dynamics%20at%20the%20World%25u2019s%20Strongest%20Hotspot.pdf$$yOpenAccess
000904133 909CO $$ooai:juser.fz-juelich.de:904133$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169740$$aForschungszentrum Jülich$$b11$$kFZJ
000904133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b12$$kFZJ
000904133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176613$$aForschungszentrum Jülich$$b13$$kFZJ
000904133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b14$$kFZJ
000904133 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000904133 9131_ $$0G:(DE-HGF)POF4-2A3$$1G:(DE-HGF)POF4-2A0$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lCOOPERATION ACROSS RESEARCH FIELDS (CARFs)$$vRemote Sensing (CARF - CCA)$$x1
000904133 9141_ $$y2021
000904133 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000904133 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000904133 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904133 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000904133 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bB AM METEOROL SOC : 2019$$d2021-02-02
000904133 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bB AM METEOROL SOC : 2019$$d2021-02-02
000904133 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000904133 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000904133 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904133 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000904133 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000904133 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-02-02$$wger
000904133 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000904133 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000904133 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000904133 9801_ $$aFullTexts
000904133 980__ $$ajournal
000904133 980__ $$aVDB
000904133 980__ $$aI:(DE-Juel1)IEK-7-20101013
000904133 980__ $$aUNRESTRICTED
000904133 981__ $$aI:(DE-Juel1)ICE-4-20101013