001     904133
005     20240712100911.0
024 7 _ |a 10.1175/BAMS-D-20-0034.1
|2 doi
024 7 _ |a 0003-0007
|2 ISSN
024 7 _ |a 1520-0477
|2 ISSN
024 7 _ |a 2128/29730
|2 Handle
024 7 _ |a WOS:000651498500014
|2 WOS
037 _ _ |a FZJ-2021-05703
082 _ _ |a 550
100 1 _ |a Rapp, Markus
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot
260 _ _ |a Boston, Mass.
|c 2021
|b ASM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669887862_20348
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The southern part of South America and the Antarctic peninsula are known as the world’s strongest hotspot region of stratospheric gravity wave (GW) activity. Large tropospheric winds are deflected by the Andes and the Antarctic Peninsula and excite GWs that might propagate into the upper mesosphere. Satellite observations show large stratospheric GW activity above the mountains, the Drake Passage, and in a belt centered along 60°S. This scientifically highly interesting region for studying GW dynamics was the focus of the Southern Hemisphere Transport, Dynamics, and Chemistry–Gravity Waves (SOUTHTRAC-GW) mission. The German High Altitude and Long Range Research Aircraft (HALO) was deployed to Rio Grande at the southern tip of Argentina in September 2019. Seven dedicated research flights with a typical length of 7,000 km were conducted to collect GW observations with the novel Airborne Lidar for Middle Atmosphere research (ALIMA) instrument and the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) limb sounder. While ALIMA measures temperatures in the altitude range from 20 to 90 km, GLORIA observations allow characterization of temperatures and trace gas mixing ratios from 5 to 15 km. Wave perturbations are derived by subtracting suitable mean profiles. This paper summarizes the motivations and objectives of the SOUTHTRAC-GW mission. The evolution of the atmospheric conditions is documented including the effect of the extraordinary Southern Hemisphere sudden stratospheric warming (SSW) that occurred in early September 2019. Moreover, outstanding initial results of the GW observation and plans for future work are presented.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
536 _ _ |a 2A3 - Remote Sensing (CARF - CCA) (POF4-2A3)
|0 G:(DE-HGF)POF4-2A3
|c POF4-2A3
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kaifler, Bernd
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dörnbrack, Andreas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gisinger, Sonja
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mixa, Tyler
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Reichert, Robert
|0 P:(DE-Juel1)184726
|b 5
700 1 _ |a Kaifler, Natalie
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Knobloch, Stefanie
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Eckert, Ramona
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wildmann, Norman
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Giez, Andreas
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Krasauskas, Lukas
|0 P:(DE-Juel1)169740
|b 11
|u fzj
700 1 _ |a Preusse, Peter
|0 P:(DE-Juel1)129143
|b 12
|u fzj
700 1 _ |a Geldenhuys, Markus
|0 P:(DE-Juel1)176613
|b 13
|u fzj
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 14
|u fzj
700 1 _ |a Woiwode, Wolfgang
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Friedl-Vallon, Felix
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Sinnhuber, Björn-Martin
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Torre, Alejandro de la
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Alexander, Peter
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Hormaechea, Jose Luis
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Janches, Diego
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Garhammer, Markus
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Chau, Jorge L.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Conte, J. Federico
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Hoor, Peter
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Engel, Andreas
|0 P:(DE-HGF)0
|b 26
773 _ _ |a 10.1175/BAMS-D-20-0034.1
|g Vol. 102, no. 4, p. E871 - E893
|0 PERI:(DE-600)2029396-3
|n 4
|p E871 - E893
|t Bulletin of the American Meteorological Society
|v 102
|y 2021
|x 0003-0007
856 4 _ |u https://juser.fz-juelich.de/record/904133/files/%5B15200477%20-%20Bulletin%20of%20the%20American%20Meteorological%20Society%5D%20SOUTHTRAC-GW%20An%20Airborne%20Field%20Campaign%20to%20Explore%20Gravity%20Wave%20Dynamics%20at%20the%20World%25u2019s%20Strongest%20Hotspot.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904133
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)169740
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)129143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)176613
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l COOPERATION ACROSS RESEARCH FIELDS (CARFs)
|1 G:(DE-HGF)POF4-2A0
|0 G:(DE-HGF)POF4-2A3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Remote Sensing (CARF - CCA)
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b B AM METEOROL SOC : 2019
|d 2021-02-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b B AM METEOROL SOC : 2019
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21