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Chiral response of spin-spiral states as the origin of chiral transport fingerprints of spin textures
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The transport properties of nontrivial spin textures are coming under closer scrutiny as the amount of
experimental data and theoretical simulations is increasing. To extend the commonly accepted yet simplifying
and approximate picture of transport effects taking place in systems with spatially varying magnetization, it is
important to understand the transport properties of building blocks for spin textures—the homochiral spin-spiral
states. In this work, by referring to phenomenological symmetry arguments based on the gradient expansion, and
explicit calculations within the Kubo framework, we study the transport properties of various types of spin-spirals
in a two-dimensional model with strong spin-orbit interaction. In particular, we focus on the contributions to the
magnetoconductivity, the planar Hall effect, and the anomalous Hall effect, which are sensitive to the sense of
chirality of the spiral states. We analyze the emergence, symmetry, and microscopic properties of the resulting
chiral magnetoconductivity, chiral planar Hall effect, and chiral Hall effect in terms of spin-spiral propagation
direction, cone angle, spiral pitch, and disorder strength. Our findings suggest that the presence of spin-spiral
states in magnets can be readily detected in various types of magnetotransport setups. Moreover, the sizable
magnitude of chiral contributions to the conductivity of skyrmions estimated from homochiral spirals implies
that chiral, as opposed to topological, magnetotransport can play a prominent role for the detection of nontrivial
spin textures.
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I. INTRODUCTION

The electron dynamics taking place in diverse magneti-
zation textures is one of the most intensively pursued areas
of solid-state physics, at the crossroads between topology,
transport, and physics of nonuniform media. In particular,
the transport manifestations of electron dynamics in spin
textures exposed to external electric fields have come to
occupy a very important role in modern skyrmionics and
spintronics due to numerous implications for practical im-
plementations of skyrmion-based design philosophy. Since
the early days of the field, a commonly accepted approach
for treating the transverse transport of complex spin-textures
in two dimensions, such as skyrmions, has relied heavily
on the presence of the so-called emergent field, coupling
spatial gradients ∂xn̂ and ∂yn̂. Since the seminal paper of
Bruno and co-workers [1], the validity of the ansatz for the
transverse Hall conductivity as an object directly propor-
tional to the emergent field has been tested and validated in
many cases, from effective models [2–4], microscopic cal-
culations [5,6], and direct comparison to experiments [7,8],
while “topological” contributions have also been reported
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for magnetoconductivity and the planar Hall effect [9–13].
However, in recent years, evidence has started to accumu-
late that the simple picture of the emergent field and the
corresponding topological Hall effect often do not suffice to
explain results from experimental transport measurements.
The community has become more aware of the fact that the
emergent field picture has to be radically extended [14,15,17],
particularly in strongly spin-orbit coupled systems. On the
one hand, recent works have shown that in spin-orbit coupled
systems, the second order in magnetization gradient terms,
which go beyond the conventional topological-like signal,
can contribute significantly to the orbital magnetism and Hall
effect exhibited by the textures [16,17]. On the other hand,
it has been demonstrated that an effect that is much more
pronounced in strongly spin-orbit coupled systems, since it
is linear in the gradients of n̂, can emerge in the context
of Hall currents and orbital magnetism in generic spin tex-
tures [18]. The corresponding chiral Hall effect (CHE) was
shown to be directly sensitive to the sense of local spin
chirality and, in contrast to the topological Hall effect, to
fine details of spin distribution [18,19], which potentially
makes it a powerful tool for tracking texture dynamics with
magnetotransport means. Recently, it was also demonstrated
from model considerations and first-principles calculations
that the CHE can be prominent in canted spin-orbit coupled
ferromagnets and antiferromagnets [20]. For textures, a signal
consistent with such chiral contributions has been reported
experimentally for the anomalous Hall effect (AHE) [21],
the planar Hall effect (PHE) [9], and magnetoconductivity
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(MC), although additional analysis is necessary to unambigu-
ously pin down the exact microscopic origin of the observed
signal.

In the context of chiral contributions to the magnetotrans-
port of complex spin textures, understanding chiral transport
properties of elemental one-dimensional spin-spiral states
presents an important milestone and a pivotal starting point.
Spin-spirals have emerged as the ground state of various
transition-metal compounds in bulk [7], at surfaces [22],
and in one-dimensional systems [23] as a result of complex
exchange interactions. Further, spin-spirals serve as natural
building blocks for more complex spin structures such as
multi-q states [24], domain walls [25], and skyrmions [7,26],
while their treatment often provides a key to modeling fluc-
tuating magnets [27,28]. Proper theoretical understanding of
symmetry and microscopic mechanisms behind the transport
properties of spin-spiral states thus provides a necessary foun-
dation for building a coherent picture of transport phenomena
in diverse spin textures. A distinct transport signal of spiral
states has been observed in experiments lately [21], and a
recent theoretical work based on an effective Rashba model
predicted the emergence of the chiral Hall effect for specific
types of spin-spiral states [29]. At this point, a comprehensive
picture of magnetotransport of spin-spirals grounded in a re-
alistic electronic structure on a specific lattice has emerged as
a necessary next step. Technically, computing transport prop-
erties of extended spin-spiral states is very challenging. The
spin-spiral order in combination with spin-orbit interaction
is inconsistent with the generalized Bloch theorem [30,31],
which necessitates the use of very large unit cells containing
thousands of atoms. The formidable computational effort ex-
plains the noticeable lack of expansive studies in this direction
(see, e.g., [25,32]).

In our work, we study in detail the magnetotransport prop-
erties of spin-spiral states in two-dimensional magnets, and
we make predictions concerning the impact of these properties
on chiral transport fingerprints of large skyrmions. We refer
to an effective tight-binding model of electrons on a honey-
comb lattice for explicit calculations of transport properties
from the electronic structure of spin-spiral states in the Kubo
linear-response formalism. Inspecting components of the con-
ductivity tensor (anti)symmetrized with respect to chirality,
we uncover chiral contributions to anisotropic magnetocon-
ductivity (denoted below as MC), the planar Hall effect, and
the anomalous Hall effect. Specifically, we find perfect agree-
ment between numerical results from the Kubo formalism
and symmetry-based predictions from the gradient expansion
for the existence of chiral contributions as a function of the
spin-spiral propagation direction and the type of spiral. We
address intrinsic and extrinsic origins of the considered ef-
fects, uncovering a nontrivial competition of disorder and
Berry phase effects on the chiral Hall effect exhibited by spin-
spirals and skyrmions. The strong and extremely nontrivial
response of the chiral transport to the pitch of the spirals
found here suggests that chiral magnetotransport serves as
a unique marker of the fine details of the spin distribution
in spin textures. Finally, we show how by extracting effec-
tive parameters from explicit calculations of spin-spirals, the
chiral transport properties of large-scale skyrmions can be
predicted.

II. APPROACH

A. Model

We investigate the existence and properties of chiral mag-
netotransport effects on a bipartite honeycomb lattice of
magnetic spins. To model the electronic structure, we employ
an effective two-dimensional lattice tight-binding Hamilto-
nian (in the xy-plane) which reads

H = −t
∑
〈i j〉α

c†
iαc jα + iαR

∑
〈i j〉αβ

êz · (σ × di j )αβ c†
iαc jβ

+ λex

∑
iαβ

(ŝi · σ)αβ c†
iαciβ, (1)

where c†
iα (ciα) denotes the creation (annihilation) of an elec-

tron with spin α at site i, 〈· · · 〉 restricts the sums to nearest
neighbors, the unit vector di j points from j to i, and σ stands
for the vector of Pauli matrices. Besides the hopping with
amplitude t , Eq. (1) contains the Rashba spin-orbit coupling
of strength αR originating, for example, in the surface poten-
tial gradient perpendicular to the plane (i.e., along ẑ). The
remaining term in Eq. (1) is the local exchange term, with λex

characterizing the strength of exchange splitting, and ŝi stands
for the direction of spin on site i. Here, we work with the
following parameters of the model: t = 1.0 eV, αR = 0.4 eV,
and λex = 1.4 eV, which corresponds to the case of a strongly
spin-orbit-coupled magnet.

B. Parametrization of spin spirals

In this work, we impose magnetic spiral distribution of
spins ŝi in the Hamiltonian (1), and we study the transport
properties of such states. We proceed by first defining a con-
tinuous, normalized vector field n̂(x) which is discretized on
the lattice as

ŝi ≡ n̂(Ri − R0), (2)

where Ri corresponds to the real-space position of lattice site
i, and R0 represents a choice for the origin of the continuous
coordinate system. General spin-spirals are one-dimensional,
periodic patterns of spins, whose modulation is characterized
by a single phase factor �(x) = q · x. Explicitly, we first
construct such a spin-spiral in the x-direction followed by a
rotation Rez

φq
around the z-axis into the actual direction of the

q-vector, as characterized by its polar coordinate φq:

n̂ = Rez

φq
Rer

� n̂0. (3)

Here, n̂0 defines the initial orientation of n̂ for � = 0. Fol-
lowing the direction of q in real space, the pattern describes a
rotational motion around the axis defined by er . With n̂0 = ez

fixed, three different cases are considered here; see Fig. 1:
the Bloch spiral er = ex, the Néel spiral er = ey, and a tilted
conical Néel phase er = sin α ey + cos α ez with cone angle
0 � α � π/2, interpolating between the ferromagnetic phase
for α = 0 and the Néel spiral for α = π/2. All different cases
are contained in the parametrization

er = sin β sin α ex + cos β sin α ey + cos α ez, (4)

where the angle 0 � β � π/2 can rotate from the tilted Néel
phase (β = 0) to a tilted Bloch phase (β = π/2).
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FIG. 1. Parametrization of Néel, Bloch, and cone-type spirals. Parts (a)–(c) show the parametrization of Néel (a), Bloch (b), and cone-type
(c) spin-spirals on a sphere spanned by magnetic moments. The spiral propagates along a direction q, and the magnetization rotates around an
axis er , which encloses a cone angle α with the initial magnetic moment n̂0. For the Néel spiral, er⊥q, while for the Bloch spiral, er ‖ q. In
this work, the plane of the honeycomb lattice is the xy-plane (axis ẑ is perpendicular to it), which contains q. Plots (d)–(f) show the real-space
distribution (as seen from the top) of corresponding magnetization textures for q ‖ x̂.

The wave-vector pitch q = ‖q‖ is the main tuning knob
to adjust the magnetization pattern in this work. The limiting
cases are the ferromagnetic (FM) pattern for q = 0 and the
antiferromagnetic pattern for q = π . The q = 0 limit corre-
sponds to the regular out-of-plane (along the z-axis) FM case.
However, depending on the orientation of the rotation axis
er in real space, the two spins in the AFM pattern are not
antiparallel, but enclose a polar angle of 2α, twice the cone
angle that the rotation axis er encloses with the z-axis. This
can be understood by realizing that a phase π between spins
on neighboring atomic sites corresponds to opposite positions
on the cone around the rotation axis er , which has an opening
angle of 2α.

C. Gradient expansion

Within the linear-response theory, the conductivity tensor
σαβ describes the electric current response in the system,
which is linear in electric field E as jα = σαβEβ . To ar-
rive at a way to categorize different physical effects that are
encapsulated in the conductivity tensor, we start by writing
an asymptotic expansion in the gradients ∂in j for a smooth
magnetization texture, i.e.,

σαβ[n̂] = 〈σ col
αβ (n̂) + σ

χ

αβγ δ (n̂)∂γ nδ + O(∂2)〉 . (5)

Here, the bracket 〈•〉 indicates the real-space integral
∫

dx/V ,
where V is the real-space volume of the system, x = (x, y) is
the position vector, and the notation [n̂] implies the functional
dependence on the overall texture as given by the distribu-
tion of n̂ in real space. The conductivity tensor itself can
be decomposed into symmetric and antisymmetric compo-
nents with respect to the interchange of indices α and β:
σαβ [n̂] = σ[αβ][n̂] + σ(αβ )[n̂]. Here [αβ] indicates the anti-
symmetrization, whereas (αβ ) represents a symmetrization
of indices. Via the Onsager reciprocity relations, σ[αβ][n̂] =
−σ[αβ][−n̂] and σ(αβ )[n̂] = σ(αβ )[−n̂]. The symmetric tensor
then describes magnetoconductivity, anisotropic magnetocon-
ductivity, and planar Hall effects, while its antisymmetric
counterpart captures the anomalous Hall effect. The super-
script “col” indicates that σ col

αβ (n̂(x)) fully describes the linear

response of a collinear magnetized state. For slowly varying
textures, the next-to-leading-order term σ

χ

αβγ δ (n̂(x)) couples
to the first-order gradients of the magnetization texture and is
therefore sensitive to the chirality of n̂, thereby providing the
chiral part of the overall conductivity tensor. When the texture
constitutes a spin-spiral with a wave vector q, as introduced
above, the corresponding chiral corrections to the conductivity
are fully antisymmetric in q.

Following [33], one can expand σ col and σχ into powers of
the magnetization vector n̂ and reduce the number of possible
coupling terms using the restrictions imposed by the crystallo-
graphic point group of the nonmagnetic lattice. For example,
this method has been successfully applied recently to study
the chiral corrections to the spin-Hall magnetoresistance in the
noncollinear magnet Cu2OSeO3 [34]. Below, we demonstrate
the way that it can be done for the partial case of C6v sym-
metry of the Hamiltonian as given by Eq. (1). A systematic
way to perform this reduction is guided by the representation
theory of C6v as summarized by the character table in Table I.
Accordingly, the gradient operator ∇ = (∂x, ∂y) generates the
representations 
x = 
∇ = E1. The magnetization n̂—as an
axial vector—decomposes into n̂‖ = (nx, ny, 0) belonging to
E1, and n̂⊥ = (0, 0, nz ) belonging to A2, i.e., 
n̂ = A2 + E1.
Using the Schur orthogonality relations [35,36], one can
derive the decomposition of the Kronecker products 
i ⊗

TABLE I. Character table of C6v . Shown are the characters of
each irreducible representation for each conjugacy class, alongside
linear and quadratic basis functions which generate the respective
representations.

C6v E 2C6(z) 2C3(z) C2(z) 3σv 3σd linear quadratic

A1 1 1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 1 −1 −1 nz

B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 1 −1 −2 0 0 (x, y) (xz, yz)
E2 2 −1 −1 2 0 0 (x2 − y2, xy)
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TABLE II. Kronecker products in C6v . Shown is the reduction
of all possible combinations of Kronecker products among the irre-
ducible representations of C6v .

⊗ A1 A2 B1 B2 E1 E2

A1 A1 A2 B1 B2 E1 E2

A2 A2 A1 B2 B1 E1 E2

B1 B1 B2 A1 A2 E2 E1

B2 B2 B1 A2 A1 E2 E1

E1 E1 E1 E2 E2 A1 + A2 + E2 B1 + B2 + E1

E2 E2 E2 E1 E1 B1 + B2 + E1 A1 + A2 + E2


 j = ⊕
k λk
k among any of the irreducible representations

(irreps) 
i, where λk are positive integers. Summarized in
Table II, the result of this procedure can be used to study
the symmetry-allowed couplings in the expansion of σαβ :
since it couples two polar vectors in the x-y plane, it carries
the representation σ = E1 ⊗ E1 = A1 + A2 + E2. Different ir-
reps, therefore, distinguish different categories of physical
effects, which are summarized in Table III and which will be
introduced in the following. Due to the Onsager relations, the
A1 and E2 contributions to σαβ have to be even in ni while
the A2 term is odd. In the absence of magnetism or possible
external fields, all components that do not belong to the totally
symmetric representation A1 have to vanish by Neumann’s
symmetry principle [37,38]. The A1 term (σ(xx) + σ(yy) )/2
then captures the isotropic contributions to the longitudinal
conductivity. In the presence of a finite magnetization, the
components of n̂ and its gradients can form a basis for the
irreducible representations A2 and E2, thereby leading to a
finite anomalous Hall effect in σ[xy] and a finite planar Hall ef-
fect in σ(xy) for example. Using representation theory, one can
study what different terms appear in the gradient expansion of
Eq. (5) if each of the tensors is expanded as a power series
in ni. For the collinear case, one finds that the magnetization
carries the following irreducible representations:

A1 : n2
‖, n2

⊥, (6)

A2 : nz, (7)

E1 : (nxnz, nynz ), (8)

E2
((

n2
x − n2

y

)
/2, nxny

)
, (9)

up to second order in ni, where n2
⊥ = n2

z and n2
‖ = n2

x + n2
y .

Here, one has to take into account that n̂ transforms as a
pseudovector. At the given order in ni, there are thus five
couplings to the collinear magnetic state:

σ col
A1

(n̂) = γLC + γMC‖n̂‖2 + γAMC(n2
⊥ − n2

‖ ) + O
(
n4

i

)
, (10)

σ col
A2

(n̂) = γAHEnz + O
(
n3

i

)
, (11)

σ col
E2

(n̂) = γPHE
[(

n2
x − n2

y

)
/2, nxny

] + O
(
n4

i

)
, (12)

which we refer to as the longitudinal conductivity
(LC), the magnetoconductivity (MC), the anisotropic
magnetoconductivity (AMC), the anomalous Hall effect
(AHE), and the planar Hall effect (PHE). The PHE is
commonly understood as the off-diagonal components
σ(xy) of the symmetrized conductivity tensor. Due to the
peculiarity of the C6v symmetry, the same coefficient controls
anisotropic contributions to the longitudinal conductivity
(σ(xx) − σ(yy) )/2. In Table III, this latter term is therefore
listed as the longitudinal planar Hall effect (LPHE).

Moving on to the gradient-induced effects in two dimen-
sions, one can deduce from Tables I and II that 
∇⊗n̂ ≡
E1 ⊗ (A2 + E2) = A1 + A2 + E1 + E2. The relevant irrep is
A2 (due to the Onsager relations), and it occurs only once:

A1 : (∇ × n̂)z, (13)

A2 : ∇ · n̂, (14)

E1 : (∂xnz, ∂ynz ), (15)

E2 : (∂xnx − ∂yny, ∂xny + ∂ynx ). (16)

We assume that partial integration can be performed under the
real-space integral in Eq. (5), which renders the A2 contribu-
tion integrate to zero. The next order in ni can be obtained by
reducing the tensor product 
∇⊗n̂ ⊗ 
n̂ = 2A1 + 2A2 + B1 +
B2 + 4E1 + 2E2:

A2 ⊗ A2 → A1 : (∇ · n̂)nz, (17)

E1 ⊗ A2 → A1 : (n̂ · ∇)nz, (18)

E2 ⊗ A2 → E2 : nz(∂xnx − ∂yny, ∂xny + ∂ynx ), (19)

E1 ⊗ E1 → E2 : (nx∂xnz − ny∂ynz, nx∂ynz + ny∂xnz ). (20)

Under partial integration, one recognizes that the A1 contri-
butions combine into the Lifshitz invariant (∇ · n̂)nz − (n̂ ·

TABLE III. Classification of electric transport effects in a noncollinear magnet. For the symmetry group C6v , the conductivity tensor
in the x-y plane factors into the irreducible representations σ = E1 ⊗ E1 = A1 + A2 + E2. Each representation is generated from specific
combinations of the components σαβ , which we refer to as channels. Within each channel, different kinds of physical effects can appear which
are sensitive to different aspects of the underlying magnetization texture and which we roughly divide into those effects that are already present
in a collinear ferromagnet and those that require a finite, first-order gradient ∂in j .

Irrep Channel Name Collinear effects O(∂0) Chiral effects O(∂1)

A1 (σ(xx) + σ(yy) )/2 isotropic
longitudinal

longitudinal conductivity (LC),
magnetoconductivity (MC), anisotropic
magnetoconductivity (AMC)

chiral magnetoconductivity (CMC)

A2 σ[xy] antisymmetric
transverse

anomalous Hall effect (AHE) chiral Hall effect (CHE)

(E2)1 (σ(xx) − σ(yy) )/2 anisotropic
longitudinal

longitudinal planar Hall effect (LPHE) chiral longitudinal planar Hall effect (CLPHE)

(E2)2 σ(xy) symmetric
transverse

planar Hall effect (PHE) chiral planar Hall effect (CPHE)
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∇)nz, which is also responsible for the DMI interaction under
C6v symmetry [39,40]. The two E2 contributions are the same
under partial integration as well. Combined, this leads to

σ
χ

A1,αβ (n̂)∂αnβ =γCMC(∇ · n̂ − n̂ · ∇)nz + O
(
n4

i

)
, (21)

σ
χ

E2,αβ (n̂)∂αnβ = γCPHE nz(∂xnx − ∂yny, ∂xny + ∂ynx )

+ O
(
n4

i

)
, (22)

describing the chiral magnetoconductivity (CMC) and the
chiral planar Hall effect (CPHE).

The symmetrized tensor product Sym(n̂ ⊗ n̂) carries the
representation 
Sym(n̂⊗n̂) = 2A1 + E1 + E2. For the next order
in ni, one therefore finds 
∇⊗n̂ ⊗ 
Sym(n̂⊗n̂) = 4A1 + 4A2 +
2B1 + 2B2 + 6E1 + 6E2. Since this order is odd under time
reversal, we are only interested in the four A2 representations
given by

A2 ⊗ A1 → 2A2 : (∇ · n̂)n2
⊥, (∇ · n̂)n2

‖, (23)

E1 ⊗ E1 → A2 : (n̂ · ∇)n2
⊥/2, (24)

E2 ⊗ E2 → A2 : nxny(∂xny + ∂ynx )

+ (
n2

x − n2
y

)
(∂xnx − ∂yny)/2. (25)

The last term may be recombined with other A2 representa-
tions of this order such that it can be written as (n̂ · ∇)n2

‖/2.
And therefore

σ
χ

A2,αβ (n̂)∂αnβ =γCHE (∇ · n̂)(n2
⊥ − n2

‖ ) + O
(
n5

i

)
(26)

is the only coupling that describes the chiral Hall effect (CHE)
in C6v symmetric systems. In summary, we find that

σA1 [n̂] = (γLC + γMC) + γAMC 〈n2
⊥ − n2

‖〉
+ γCMC 〈(∇ · n̂ − n̂ · ∇)nz〉 + O

(
n4

i

)
, (27)

σA2 [n̂] = γAHE 〈nz〉 + γCHE 〈(∇ · n̂)(n2
⊥ − n2

‖)〉 + O
(
n5

i

)
,

(28)

σE2 [n̂] = γPHE
〈[(

n2
x − n2

y

)
/2, nxny

]〉
+ γCPHE 〈nz(∂xnx − ∂yny, ∂xny + ∂ynx )〉
+ O

(
n4

i

)
, (29)

where the factors γi are temperature-dependent material con-
stants that can be extracted from an underlying microscopic
model. Inserting the spin-spiral defined by the combination of
Eqs. (3) and (4), one arrives at

σA1 [n̂] = (γLC + γMC) + 1
2γAMC cos2(α)[3 cos(2α) − 1]

+ γCMCq cos β sin3 α + O
(
n4

i

)
, (30)

σA2 [n̂] = γAHE cos2 α + 1
2γCHEq cos β sin(α) sin2 (

2α
)

+ O
(
n5

i

)
, (31)

σE2 [n̂] = − 1
8γPHE sin2(α)[3 cos(2α) + 1]ϑ2

+ 1
2γCPHEq sin3(α)ϑ1 + O

(
n4

i

)
, (32)

where ϑn = ( cos(nβ − 2φq),− sin(nβ − 2φq)).

D. Kubo formalism

Given specific electronic structure, we calculate the trans-
verse and diagonal conductivity at zero temperature using the

Kubo formalism, which allows us to take into account the ef-
fect of disorder in the system on the conductivity tensor. To do
so, we replace the retarded and advanced Green functions G0

of the perfect crystal by the full Green function G = 1
G−1

0 −�
,

where �(E , k) is the self-energy representing the effect of
disorder. Within this work, we are using a constant broadening
model such that �(E , k) = −i
I. With the constant broaden-
ing 
 we obtain a Green function diagonal in the eigenspace
of the Hamiltonian:

GR/A(E , k)mn = δmn

E − εnk ± i

, (33)

where εnk are the single-electron eigenenergies. The antisym-
metric part of the conductivity tensor, which can be expressed
in terms of GR/A [41], splits into two contributions:

σ I
[αβ] = − 1

2π

∫
d3k

(2π )3

∑
mn

m 	=n

Im{vα
mn(k)vβ

nm(k)}

× (εmk − εnk )


[(EF − εmk )2 + 
2][(EF − εnk )2 + 
2]
(34)

and

σ II
[αβ] = − 1

π

∫
d3k

(2π )3

∑
mn

m 	=n

Im{vα
mn(k)vβ

nm(k)}

× 


(εmk − εnk )[(EF − εmk )2 + 
2]

− 1

(εmk − εnk )2
Im

{
ln

(
EF − εmk + i


EF − εmk + i


)}
, (35)

where α and β are the Cartesian indices, and EF is the Fermi
energy. We refer to σ I

αβ as the Fermi-surface term, since it
only picks up contributions from the Fermi surface. The term
σ II

αβ collects terms from all occupied states up to the Fermi
level and is therefore referred to as the Fermi-sea term. The
symmetric part of the conductivity tensor is given by [42]

σ(αβ ) = 1

π

∫
d3k

(2π )3

∑
mn

Re{vα
mn(k)vβ

nm(k)}

× 
2

[(EF − εmk )2 + 
2][(EF − εnk )2 + 
2]
. (36)

In evaluating the Kubo expressions for the conductivity of
spin-spiral states, we have considered systems treated in a
supercell with up to 1600 atoms in the unit cell, using up to
2 × 105 k-points for performing Brillouin zone integrations.

III. CHIRAL TRANSPORT PROPERTIES
OF SPIN-SPIRALS

Below we compare the results of the gradient expansion
performed up to linear order for the considered model to the
explicit tight-binding calculations of the conductivity tensor
by using the Kubo formalism. From explicit calculations of
the conductivity for the system in a spin-spiral state n̂cone

[defined in Eqs. (3) and (4)], we extract the contributions to
the conductivity tensor which are even (nonchiral, σ nc) and
odd (chiral, σ c) in spiral wave-vector q by performing the
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TABLE IV. The existence of chiral magnetotransport of spin-
spiral states. For each type of spiral state (Néel, Bloch, cone), the
emergence of the corresponding effect [nonchiral (AHE) and chiral
(CHE) anomalous Hall effect, nonchiral (MC) and chiral (CMC)
magnetoconductivity, and nonchiral (PHE) and chiral (CPHE) planar
Hall effect] is marked with the sign “�” when it is allowed by
symmetry arguments of the gradient expansion and confirmed by
explicit Kubo transport calculations, while its absence is marked with
an empty entry. Crystallographic directions [100], [011], and [110]
mark the direction of the q-vector, which correspond to the value of
φq of 0, −π/2, and π/3, respectively.

Type AHE CHE MC CMC PHE CPHE

Néel [100] � �
[011] � �
[110] � � � �

Bloch [100] � �
[011] � �
[110] � � � �

Cone [100] � � � �
[011] � � � �
[110] � � � � � �

corresponding decomposition:

σ
c (nc)
αβ = σαβ (q) ∓ σαβ (−q)

2
. (37)

Using this definition, we can make a connection to the gra-
dient expansion in the long-wavelength limit. Here, one finds
the asymptotic relationships

σ nc
αβ ∼ 〈σ col

αβ (n̂)〉 for q → 0, (38)

σ c
αβ ∼ 〈σχ

αβγ δ (n̂)∂γ nδ〉 for q → 0. (39)

We thus scrutinize the existence of chiral contributions to
the magnetoconductivity, σ c

(αα) (q-chiral part of the diagonal
components of the conductivity tensor σαα), the chiral pla-
nar Hall effect, σ c

(αβ ) (q-chiral part of the α ↔ β symmetric
off-diagonal components of the conductivity tensor σαβ), and
the chiral Hall effect, σ c

[αβ] (q-chiral part of the α ↔ β anti-
symmetric off-diagonal components of the conductivity tensor
σαβ ). The predictions of the explicit calculations concerning
the existence of MC and CMC, PHE and CPHE, and AHE and
CHE are presented in Table IV. They are entirely consistent
with the symmetry analysis of the gradient expansion also be-
yond the long-wavelength limit: whenever an empty instance
is met in the table, the gradient expansion predicts a vanishing
contribution for a given direction of the spin-spiral and its
type, while explicit calculations provide negligible values of
the conductivity. Below, we discuss in detail the emergence of
chiral contributions to the MC, PHE, and AHE.

A. Longitudinal chiral conductivity

The discussion of chiral effects in the longitudinal con-
ductivity falls into two categories: the isotropic contributions
(σ(xx) + σ(yy) )/2 from the totally symmetric irrep A1, which
we defined as CMC, and anisotropic contributions (σ(xx) −
σ(yy) )/2 from irrep E2, which we referred to as CLPHE. For

the spiral, the two effects evaluate to

γCMC 〈(∇ · n̂ − n̂ · ∇)nz〉 =γCMCq cos β sin3 α, (40)

γCPHE 〈nz(∂xnx − ∂yny)〉 = 1
2γCPHEq sin3(α) cos(β − 2φq).

(41)

For a Bloch-type spiral, β = π/2, the CMC is zero and the
CLPHE terms only exist along specific directions: cos(π/2 −
2φq) = sin(2φq). From this argument it is clear that a Bloch
spiral along the x-direction will not display any chiral longi-
tudinal conductivity. Consequently, we take these longitudinal
effects under closer inspection for a Néel-type spiral, β = 0.
Inspecting Eq. (40), we realize that

σ c
(xx) = σA1 + σ 1

E2
(42)

contains both isotropic and anisotropic components. However,
both isotropic and anisotropic components follow the angular
dependence dictated by symmetry,

σ c
(xx)(α) = sin3 ασ c

(xx)

∣∣
α=π/2

(43)

in the long-wavelength limit, independent of the type of spiral.
The band structure of the model for the Néel spiral with

±q along x and the magnitude of |q| = 0.31a−1
0 , presented

in Fig. 2(a), shows a strong chiral asymmetry. Drastic mod-
ifications brought to the energetic positions of the states as
well as their relative splittings give rise to a pronounced chi-
ral contribution to the longitudinal conductivity. In Fig. 3(a)
we show the CMC-signal given by σ c

xx as a function of
Fermi energy E f and broadening 
, taking a specific value of
|q| = 0.47a−1

0 for a Néel spiral propagating along the x-axis.
For comparison, we show the nonchiral MC in an inset. We
observe the particle-hole symmetry of the model which is
evident from the symmetry of σ c

xx with respect to Fermi energy
E f . This symmetry is fulfilled by all quantities displayed
in Figs. 3(a)–3(f). Strong contributions to CMC, shown in
Fig. 3(a), arise from certain specific energies (e.g., ±1.3 eV
and broader humps around ±2.0 eV), corresponding to the
features in the electronic structure which are most affected
by chirality. In contrast, nonchiral MC given by σ nc

xx is less
sensitive to the Fermi energy. The magnitude of the computed
CMC signal reaches as much as 30% of the nonchiral part
of the conductivity. Clearly, the largest values of CMC are
reached for the smallest values of 
, and the rapid decay of
σ c

xx with 
 is evident. A careful analysis of the CMC scaling
with 
 for very small values of 
 reveals an expected 1/


behavior.
In Eq. (43) we uncovered a direct connection between

the CMC for a Néel spiral and that of the cone-type spiral,
valid in the limit of small spin-orbit coupling (SOC). This
connection is intuitive in the sense that the Néel spiral is the
limiting case of β = 0 for the cone-type spiral, where the
cone angle approaches α = π/2. We examine the prediction
of Eq. (43) made from the relation between the Néel and
the cone-type spiral in Fig. 4(a), comparing the scaling of
the CMC-signal for the cone-type spiral, σ c

xx,cone (blue), to
the function sin3(α)σ c

xx,Néel (red). For SOC strength of up to
αR = 0.04 eV we observe a perfect match where the cone-type
spiral is equivalent to a Néel spiral (left side, α = 0) up to
cone angles as large as π/4. For even larger cone angles,
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FIG. 2. Electronic structure of Néel, Bloch, and cone-type spirals. Band structures of Néel (a) and Bloch (b) spin-spirals in the energy
interval [−1, 1] eV for q = ±0.31a−1

0 · x̂ (blue and red). (c),(d) Band structures of a cone-type spiral with the cone angle α = 0.6 rad ≈ 34.38
in the energy range of [−1, 1] eV for opposite orientations of the wave vector q = ±0.31a−1

0 · x̂, reflecting the changes in the electronic
structure due to an opposite sense of chirality. The color of the bands in (c),(d) indicates the value of the band-resolved Berry curvature �xy(k).
(e)–(h) The real-space magnetic texture corresponding to band structures in the respective columns. For more details, see the main text.

the CMC signals deviate slightly (about 2–3 %) due to the
influence of higher-order terms included in the numerical cal-
culation, which are neglected in the gradient expansion. We
can conclude here that the first nontrivial order in the gradient
expansion reproduces the numerical calculations exception-
ally well, when SOC is only of moderate strength.

The dependence of the CMC signal on the magnitude
of q is shown in Fig. 3(d) for a fixed value of 
. Clearly,
the spin-spiral pitch influences the magnitude of CMC in
the most drastic way. The data reveal that CMC vanishes in the
collinear ferromagnetic (FM) limit, q = 0, and then quickly
increases in magnitude over the whole energy range, as q
is increased, with the effect being particularly prominent at
around ±2 eV. Although the qualitative distinction between
∼q and ∼q2 contributions to the longitudinal conductivity of
domain walls has been discussed in the past based on model
arguments and material-specific calculations [25,32,43,44],
the true chiral nature of the CMC manifests in the dependence
of the overall signal on the sense of chirality of the spiral states
observed here. Remarkably, the chiral magnetoconductivity
may change sign several times for different values of q at
a fixed value of the Fermi energy. Such complex behavior
finds its roots in a strong influence of the spin-spiral vector on
the electronic structure of the system, with the corresponding
shifts of the bands occurring over the range of eVs. CMC,
therefore, directly stems from the presence of strong spin-orbit
coupling, tying the rearrangements of bands to the sense of
chirality as it is visible in Fig. 2. The extreme sensitivity of
CMC to wave vector q suggests that for spin-textures hosted in
materials with strong spin-orbit interaction, the measured lon-
gitudinal conductivity can fluctuate dramatically even upon
small variations in spin distribution, brought about, for exam-
ple, by an external magnetic field. Naively, such changes in
measured magnetotransport can be erroneously interpreted as
arising from qualitative modifications in texture properties.

B. Chiral planar Hall effect

Traditionally, the planar Hall effect is understood as the
σ(xy) entry of the conductivity tensor, which we find in the

second component of irrep E2, σ(xy) = σE2,2 [n̂]. For the case
of C6v symmetry and the cone spiral as defined before, one
finds the chiral contribution as a sum of two terms,

σE2,2 [n̂] = 1
8γPHE sin2(α)[3 cos(2α) + 1] sin(2β − 2φq)

− 1
2γCPHEq sin3(α) sin(β − 2φq). (44)

The nonchiral contribution vanishes exactly. For tilted conical
Néel spirals, β = 0, the angular dependence is sin(2φq) for
both terms. As a direct consequence, the tensor component
describing the CPHE for Néel spirals is only nonzero for
φq 	= 0, i.e., when the wave vector q is not parallel to the
x-axis. In contrast, the term in σE2,2 [n̂] proportional to γCPHE

survives for the corresponding spirals of Bloch-type along the
x-axis, β = π/2 and φq = 0. This can be understood by real-
izing that for β = π/2, the term linear in γCPHE is proportional
to cos(2φq), while the term linear in γPHE is proportional to
sin(2φq). This effective phase shift of π/2 results in a nonzero
contribution to the symmetric transverse conductivity σ(xy).
Therefore, we investigate σ(xy) for the Bloch spiral along the
x-axis, which has anisotropic contributions from irrep E2

proportional to γCPHE only. This is in contrast to the case of
σxx calculated for Néel spirals along x, where both anisotropic
and isotropic components from irreps A1 and E2 contribute.

The band structure of the model for a Bloch spiral with
±q along x and the magnitude of |q| = 0.31a−1

0 , presented in
Fig. 2(b), exhibits certain chiral asymmetry of the bands. In
comparison to the band structure of the Néel spiral shown in
Fig. 2(a), the rearrangement of bands is not as drastic for the
Bloch spiral. Nonetheless, the chiral PHE is very prominent,
as can be observed for a Bloch spiral propagating along the
x-axis with |q| = 0.47a−1

0 in Fig. 3(b). Similar to the CMC-
signal shown in Fig. 3(a), most pronounced features in the
CPHE originate from the energy regions around ±1.3 eV and
around ±2.0 eV. While these features are generally broader in
energy and similar in magnitude to CMC, strong fingerprints
of CPHE appear also around 0 eV. In comparison to CMC,
chiral PHE is not as rapidly decreasing with increasing 
,
although the overall trend remains.
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FIG. 3. Chiral magnetoconductivity (CMC), chiral planar Hall effect (CPHE), and chiral Hall effect (CHE). (a,d) Chiral magnetoconduc-
tivity (CMC), σ c

xx , calculated for a Néel-type spiral with q = ±0.47a−1
0 · x̂ as a function of Fermi energy Ef and broadening 
, (a), and as a

function of Ef and q (along x̂) at 
 of 100 meV, (d). The insets depict the corresponding behavior of the nonchiral part of the conductivity
tensor element, σ nc

xx . (b),(e) Chiral planar Hall effect (CPHE), σ c
(xy), calculated for a Bloch spiral with q = ±0.47a−1

0 · x̂ as a function of Ef and

, (b), and as a function of Ef and q (along x̂) at 
 of 100 meV, (e). The corresponding nonchiral part of the conductivity tensor element, σ nc

(xx),
vanishes in this case; see Table IV. (c),(f) Chiral Hall effect (CHE), σ c

[xy], calculated for a cone-type spiral with q = ±0.47a−1
0 · x̂ and a cone

angle of α = 0.6 rad ≈ 34.38 as a function of Ef and 
, (c), and as a function of Ef and q (along x̂) at 
 of 100 meV, (f). The insets depict the
corresponding behavior of the nonchiral part of the conductivity tensor element, σ nc

[xy].

Moving on to Fig. 3(d), we inspect CPHE as a function of
q for a fixed value of 
. We observe that the CPHE signal
vanishes for the FM limit and then increases in magnitude,
but not as rapidly as the CMC signal does. Moreover, at fixed
E f , sign changes with q occur only at very specific energies
from the range around ±1 eV for the CPHE, and not over
wide ranges of energies as is the case for CMC. This is a
consequence of an overall smoother distribution of CPHE as
a function of E f and q. We expect that CMC and CPHE are
clearly distinguishable experimentally in materials displaying
spiral textures, since they display opposite signs over a wide
range of spiral pitch q. One of the most interesting features
of the planar Hall effect for Bloch-type spirals propagating
along the x-axis is suppressed nonchiral PHE, which is given
by σ nc

(xy). This numerical result is in perfect agreement with
the predictions from the gradient expansion; see Table IV.
The nonchiral PHE vanishes completely, while we observe a

planar Hall effect, comparable in magnitude to AMC, which
is purely chiral in nature.

C. Chiral Hall effect

We finally discuss chiral corrections to the AHE exhib-
ited by spin-spiral states. The AHE is described by the
antisymmetric conductivity σ[xy], where we find the chiral
term

γCHE 〈(∇ · n̂)(n2
⊥ − n2

‖ )〉 = 1
2γCHEq cos β sin(α) sin2(2α)

(45)
for the cone spiral as introduced before. Correspondingly, this
effect is referred to as the chiral Hall effect (CHE). It is zero
for α = 0◦ and 90◦, and it attains a maximum value at α ≈
50.77. We inspect the CHE-signal for the cone-type spiral at
the intermediate value α = 0.6 rad ≈ 34.38◦.
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In Fig. 3(c) we present the calculated CHE-signal, as given
by σ c

[xy], for the cone-type spiral propagating along the x-axis
with |q| = 0.47a−1

0 and a cone angle α = 0.6 rad as a function
of Fermi energy E f and broadening 
. The overall observed
structure of the CHE as a function of the Fermi energy is
much richer than that exhibited by CMC and CPHE, as well
as the nonchiral part of the AHE, σ nc

[xy] (shown in the inset).
Consequently, the CHE is characterized by a stronger sensi-
tivity to the finer details of the electronic structure mediated
by the sense of chirality. In comparison to CMC and CPHE,
the most remarkable feature of both chiral and nonchiral parts
of the AHE is a qualitatively different behavior with 
: in
contrast to the data shown in Figs. 3(a) and 3(b) for CMC and
CPHE, the CHE-signal does not scale as dramatically with
the broadening. In particular, the most pronounced features of
the CHE located in the energy region [−1 eV, 1 eV] are the
least sensitive to 
 variation. This behavior can be explained
by the robustness of intrinsic contributions to the CHE. In
fact, with decreasing disorder the values of the CHE converge
to the clean limit values, which are given by the integrated
values of Berry curvature �xy antisymmetrized with respect
to q [20]. The rise of nonvanishing intrinsic chiral AHE be-
comes apparent from looking at Figs. 2(c) and 2(d), where
the strongly chirality-dependent electronic structure and Berry
curvature of the states is visible. On the other hand, by com-
paring the chiral and nonchiral parts of the AHE, we observe
that the disorder corrections to the intrinsic conductivity are
much more important for the CHE than for the conventional
AHE: the convergence to the clean-limit values is quite slow,
and the saturation does not occur up to broadening 
 on the
scale of 0.01 meV. This points to possibly very prominent
extrinsic contributions to the chiral Hall effect in realistic spin
textures.

In Fig. 3(f) we analyze the behavior of the CHE signal with
the magnitude of the wave vector q. What can be concluded
from comparing all the effects among each other is that while
the magnitude of the AHE and CHE is expectedly signifi-
cantly smaller than that of the CMC and CPHE (at the same
value of 
), the magnitudes of the chiral and nonchiral AHE
are comparable. Among the latter two, the CHE is much more
sensitive to q, which is especially visible for smaller values
of q, where the structure of the chiral signal is especially non-
trivial with respect to the Fermi energy. Here, small deviations
from the zero-q limit may result in sign changes in CHE,
which is relevant for magnetotransport detection of textures
(see the discussion of CMC). By inspecting the q = 0 limit
more closely in Fig. 4(b), we find that the data correctly re-
produce the ferromagnetic limit, where the CHE is vanishing.
The data presented in Fig. 4(c) also illustrate the linear scaling
behavior of the CHE signal σ a

[xy] with increasing q away from
the ferromagnetic limit. This stands in agreement with the gra-
dient expansion prediction, and it confirms that higher-order
beyond-linear corrections to the chirality-sensitive signal are
negligible in the limit of vanishing q.

The limit on the validity of the gradient expansion tech-
nique is apparent from the calculations: deviations from
linear-in-q behavior are visible above q ≈ 0.03a−1

0 —a value
that depends significantly on the parameters of the model.
Importantly, in this range of the q-vectors, we observe that
the nonchiral corrections to the q = 0 values of the AHE

FIG. 4. Scaling with the cone angle and spin-spiral pitch.
(a) Chiral magnetoconductivity (CMC) for a cone-type spiral (blue)
calculated for cone angles in the range α ∈ [0, π/2] and CMC for a
Néel-type spiral (red) calculated for cone angle α = 0 and extrapo-
lated to larger cone angles by multiplying with sin(α)3; see (43). The
relationship between CMC for cone-type and Néel spirals obtained
from the gradient expansion is reproduced with explicit tight-binding
calculations. The calculation was done for spin-orbit coupling αR =
0.04 eV at a spiral pitch q = 0.031a−1

0 . (b) Ferromagnetic limit of
the chiral Hall effect (CHE) for a cone-type spiral. Surface term
(orange), sea term (red), and the sum of the two (blue) yielding the
CHE for nonzero broadening 
. (c) The CHE signal near the FM
limit of q = 0. The linear slope γ ≈ −10.752e2a0/h in the limit of
q → 0, participating in a gradient expansion prediction (50), can be
estimated from calculations. For all plots, the data were calculated
for the values of Ef = −0.625 eV and 
 = 0.2 eV. A value of
αR = 0.4 eV was used in (b) and (c).

are significantly smaller in magnitude than the chiral signal.
This has consequences for our estimates of the qualitative
importance of the linear versus higher order in the magneti-
zation gradient contributions to the transport properties of the
large-scale textures, as discussed below.
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IV. IMPACT ON TRANSPORT PROPERTIES
OF SKYRMIONS

While super cell calculations for one-dimensional textures
are already computationally demanding, treating two-
dimensional textures such as a lattice of skyrmions requires
even more resources. However, one can deduce certain trans-
port properties in general slowly varying noncollinear textures
from the properties of the spiral phase. For example, we
consider a skyrmion texture defined by θ (r) = π (1 − r/w),
and n̂sk = ( sin(θ ) cos(ϕ + η), sin θ sin(ϕ + η), cos(θ ))T ,

where (r, ϕ) are polar coordinates in the plane. We imagine
that the skyrmion n̂sk is embedded in a ferromagnetic
host, n̂fm = ez, and we integrate the real-space averages in
Eqs. (27)–(29) within the volume of the skyrmion V = πw2.
The helicity η interpolates between the Néel skyrmion for
η = 0 and the Bloch skyrmion with η = π/2. We can then
estimate the change in conductivity which is induced by the
skyrmion:

σ sk
A1

− σ fm
A1

= −π

w
γCMC cos η, (46)

σ sk
A2

− σ fm
A2

=
(

4

π2
− 1

)
γAHE − 32

9πw
γCHE cos η, (47)

σ sk
E2

− σ fm
E2

= 0. (48)

The explicit helicity dependence is one of the hallmarks of
“chiral” transport effects [19]. In contrast to the topological
Hall effect, the CHE is further characterized by its 1/w scaling
dependence in the long-wavelength limit. In the case of the
THE, a 1/w2-scaling would be expected, originating from the
emergent magnetic field Beff ∼ n̂ · (∂xn̂ × ∂yn̂) and which, for
large w, will eventually be the subdominant contribution of
the two different effects. Concerning practical computations,
the coefficient γAHE can be simply extracted from a calcula-
tion of a collinear state, while the material parameters γCMC

and γCHE could be estimated from the spiral calculations as
presented before via

γCMC ≈ lim
q→0

∂q
σA1 [n̂]

cos β sin3 α
, (49)

γCHE ≈ lim
q→0

∂q
σA2 [n̂]

cos β sin α sin2(2α)/2
. (50)

The relation is approximate since strong spin-orbit coupling
would lead to higher-order corrections in the α and β depen-
dence which could not be factored out. Irrespective of this, the

large effective values of γ correspond to the observation that
CHE reaches values comparable in magnitude to the collinear
AHE already for small values of pitch q. This speaks to the
fact that the chiral transport signal should be the dominant
source of texture-driven conductivity for wide regimes of tex-
ture profiles.

V. CONCLUSIONS

In this work, we have pursued the idea that homoge-
neous spin-spiral states can exhibit macroscopic transport
properties that are sensitive to their sense of winding, or chi-
rality. Inspired by previous effective analysis, we referred to
an explicit two-dimensional electronic model and rigorously
demonstrated the emergence of chiral magnetoconductivity,
the chiral planar Hall effect, and the chiral Hall effect. Based
on Kubo and gradient expansion techniques, we showed
that the corresponding chiral signal can be very prominent,
depending on the type of the spiral state. It also follows
from our analysis that in addition to the high sensitivity
of the effects to the electronic structure, the lengthscale of
the one-dimensional spin texture has a profound effect on
the magnitude and sign of the chiral signal. This can prove
extremely useful in dealing with aspects such as transport
signatures of texture dynamics or magnetic phase transitions.
Besides bringing fundamental novel insights into the interplay
between spin chirality and magnetotransport, we show how an
ability to predict the underlying properties of simpler spiral
states paves the way to understanding and educated engineer-
ing of transport fingerprints for more complex textures such
as magnetic skyrmions.
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