000904139 001__ 904139
000904139 005__ 20240712101016.0
000904139 0247_ $$2doi$$a10.5194/acp-21-16293-2021
000904139 0247_ $$2ISSN$$a1680-7316
000904139 0247_ $$2ISSN$$a1680-7324
000904139 0247_ $$2Handle$$a2128/29901
000904139 0247_ $$2altmetric$$aaltmetric:116439511
000904139 0247_ $$2WOS$$aWOS:000716444700001
000904139 037__ $$aFZJ-2021-05709
000904139 082__ $$a550
000904139 1001_ $$00000-0001-9604-8671$$aDecker, Zachary C. J.$$b0
000904139 245__ $$aNighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data
000904139 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000904139 3367_ $$2DRIVER$$aarticle
000904139 3367_ $$2DataCite$$aOutput Types/Journal article
000904139 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641389000_15140
000904139 3367_ $$2BibTeX$$aARTICLE
000904139 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904139 3367_ $$00$$2EndNote$$aJournal Article
000904139 520__ $$aWildfires are increasing in size across the western US, leading to increases in human smoke exposure and associated negative health impacts. The impact of biomass burning (BB) smoke, including wildfires, on regional air quality depends on emissions, transport, and chemistry, including oxidation of emitted BB volatile organic compounds (BBVOCs) by the hydroxyl radical (OH), nitrate radical (NO3), and ozone (O3). During the daytime, when light penetrates the plumes, BBVOCs are oxidized mainly by O3 and OH. In contrast, at night or in optically dense plumes, BBVOCs are oxidized mainly by O3 and NO3. This work focuses on the transition between daytime and nighttime oxidation, which has significant implications for the formation of secondary pollutants and loss of nitrogen oxides (NOx=NO+NO2) and has been understudied. We present wildfire plume observations made during FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality), a field campaign involving multiple aircraft, ground, satellite, and mobile platforms that took place in the United States in the summer of 2019 to study both wildfire and agricultural burning emissions and atmospheric chemistry. We use observations from two research aircraft, the NASA DC-8 and the NOAA Twin Otter, with a detailed chemical box model, including updated phenolic mechanisms, to analyze smoke sampled during midday, sunset, and nighttime. Aircraft observations suggest a range of NO3 production rates (0.1–1.5 ppbv h−1) in plumes transported during both midday and after dark. Modeled initial instantaneous reactivity toward BBVOCs for NO3, OH, and O3 is 80.1 %, 87.7 %, and 99.6 %, respectively. Initial NO3 reactivity is 10–104 times greater than typical values in forested or urban environments, and reactions with BBVOCs account for >97 % of NO3 loss in sunlit plumes (jNO2 up to 4×10−3s−1), while conventional photochemical NO3 loss through reaction with NO and photolysis are minor pathways. Alkenes and furans are mostly oxidized by OH and O3 (11 %–43 %, 54 %–88 % for alkenes; 18 %–55 %, 39 %–76 %, for furans, respectively), but phenolic oxidation is split between NO3, O3, and OH (26 %–52 %, 22 %–43 %, 16 %–33 %, respectively). Nitrate radical oxidation accounts for 26 %–52 % of phenolic chemical loss in sunset plumes and in an optically thick plume. Nitrocatechol yields varied between 33 % and 45 %, and NO3 chemistry in BB plumes emitted late in the day is responsible for 72 %–92 % (84 % in an optically thick midday plume) of nitrocatechol formation and controls nitrophenolic formation overall. As a result, overnight nitrophenolic formation pathways account for 56 %±2 % of NOx loss by sunrise the following day. In all but one overnight plume we modeled, there was remaining NOx (13 %–57 %) and BBVOCs (8 %–72 %) at sunrise.
000904139 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000904139 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904139 7001_ $$0P:(DE-HGF)0$$aRobinson, Michael A.$$b1
000904139 7001_ $$00000-0002-6065-8643$$aBarsanti, Kelley C.$$b2
000904139 7001_ $$00000-0002-2875-1258$$aBourgeois, Ilann$$b3
000904139 7001_ $$0P:(DE-HGF)0$$aCoggon, Matthew M.$$b4
000904139 7001_ $$00000-0002-6764-8624$$aDiGangi, Joshua P.$$b5
000904139 7001_ $$00000-0002-3617-0269$$aDiskin, Glenn S.$$b6
000904139 7001_ $$0P:(DE-HGF)0$$aFlocke, Frank M.$$b7
000904139 7001_ $$0P:(DE-HGF)0$$aFranchin, Alessandro$$b8
000904139 7001_ $$00000-0002-9127-5258$$aFredrickson, Carley D.$$b9
000904139 7001_ $$0P:(DE-Juel1)184937$$aGkatzelis, Georgios$$b10$$ufzj
000904139 7001_ $$0P:(DE-HGF)0$$aHall, Samuel R.$$b11
000904139 7001_ $$00000-0001-9499-9836$$aHalliday, Hannah$$b12
000904139 7001_ $$00000-0002-2727-0954$$aHolmes, Christopher D.$$b13
000904139 7001_ $$00000-0002-0518-7690$$aHuey, L. Gregory$$b14
000904139 7001_ $$0P:(DE-HGF)0$$aLee, Young Ro$$b15
000904139 7001_ $$00000-0003-1872-3162$$aLindaas, Jakob$$b16
000904139 7001_ $$00000-0002-2984-6304$$aMiddlebrook, Ann M.$$b17
000904139 7001_ $$0P:(DE-HGF)0$$aMontzka, Denise D.$$b18
000904139 7001_ $$00000-0003-2911-4469$$aMoore, Richard$$b19
000904139 7001_ $$00000-0002-3986-1727$$aNeuman, J. Andrew$$b20
000904139 7001_ $$00000-0002-5697-9807$$aNowak, John B.$$b21
000904139 7001_ $$00000-0001-5548-0812$$aPalm, Brett B.$$b22
000904139 7001_ $$00000-0002-9320-7101$$aPeischl, Jeff$$b23
000904139 7001_ $$00000-0002-8191-8029$$aPiel, Felix$$b24
000904139 7001_ $$00000-0002-8459-869X$$aRickly, Pamela S.$$b25
000904139 7001_ $$0P:(DE-HGF)0$$aRollins, Andrew W.$$b26
000904139 7001_ $$00000-0003-2800-7581$$aRyerson, Thomas B.$$b27
000904139 7001_ $$00000-0002-7095-3718$$aSchwantes, Rebecca H.$$b28
000904139 7001_ $$0P:(DE-HGF)0$$aSekimoto, Kanako$$b29
000904139 7001_ $$0P:(DE-HGF)0$$aThornhill, Lee$$b30
000904139 7001_ $$0P:(DE-HGF)0$$aThornton, Joel A.$$b31
000904139 7001_ $$00000-0002-0695-5241$$aTyndall, Geoffrey S.$$b32
000904139 7001_ $$0P:(DE-HGF)0$$aUllmann, Kirk$$b33
000904139 7001_ $$0P:(DE-HGF)0$$aVan Rooy, Paul$$b34
000904139 7001_ $$00000-0001-7539-353X$$aVeres, Patrick R.$$b35
000904139 7001_ $$0P:(DE-HGF)0$$aWarneke, Carsten$$b36
000904139 7001_ $$0P:(DE-HGF)0$$aWashenfelder, Rebecca A.$$b37
000904139 7001_ $$0P:(DE-HGF)0$$aWeinheimer, Andrew J.$$b38
000904139 7001_ $$0P:(DE-HGF)0$$aWiggins, Elizabeth$$b39
000904139 7001_ $$0P:(DE-HGF)0$$aWinstead, Edward$$b40
000904139 7001_ $$0P:(DE-HGF)0$$aWisthaler, Armin$$b41
000904139 7001_ $$00000-0002-7101-9054$$aWomack, Caroline$$b42
000904139 7001_ $$0P:(DE-HGF)0$$aBrown, Steven S.$$b43$$eCorresponding author
000904139 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-16293-2021$$gVol. 21, no. 21, p. 16293 - 16317$$n21$$p16293 - 16317$$tAtmospheric chemistry and physics$$v21$$x1680-7316$$y2021
000904139 8564_ $$uhttps://juser.fz-juelich.de/record/904139/files/acp-21-16293-2021.pdf$$yOpenAccess
000904139 909CO $$ooai:juser.fz-juelich.de:904139$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184937$$aForschungszentrum Jülich$$b10$$kFZJ
000904139 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000904139 9141_ $$y2021
000904139 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000904139 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000904139 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904139 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000904139 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000904139 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000904139 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000904139 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000904139 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000904139 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000904139 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904139 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000904139 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000904139 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000904139 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000904139 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000904139 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000904139 9801_ $$aFullTexts
000904139 980__ $$ajournal
000904139 980__ $$aVDB
000904139 980__ $$aUNRESTRICTED
000904139 980__ $$aI:(DE-Juel1)IEK-8-20101013
000904139 981__ $$aI:(DE-Juel1)ICE-3-20101013